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The goal of the original manuscript by Drab et al. [1]
was to derive the otherwise contingent dispersion term
in the Heimburg–Jackson (HJ) model [2] from first prin-
ciples. The goal of the work was to present a model of
axonal propagation that is comparable to the simplicity
of the HJ model, but provides a physical background for
the dispersion term presented in [2]. Dispersion terms
that provide solitary wave solutions can be varied, and
it is not immediately apparent that the fourth-order
dispersion term used in [2] is the best choice or what
physical principle underlies it hinges. The authors of
[1] show that the fourth-order dispersion term follows
naturally from the bending properties of the axon mem-
brane.

In their comment Peets et al. discuss mainly method-
ological aspects of the study [1]. While some of the com-
ments on the methods used in [1] (e.g., for the formal
solution of differential equations) are relevant and use-
ful, other more formalistic comments mostly do not con-
tribute significantly to clarify better the basic physical
assumptions of the model presented in [1] and previous
models [2].

In the first part of the commentary, the authors dis-
cuss the differences between peakons and solitons. Drab
et al. sought solutions for travelling waves of the form
V = V(ξ), ξ = X − cT, where V is a function and
c is the velocity of the moving frame, using the tech-
nique described, for example, in [3]. Drab et al. [1], on
the other hand, were not aware of homoclinic orbits

a e-mail: mitja.drab@fe.uni-lj.si (corresponding author)
b e-mail: matej.daniel@fs.cvut.cz
c e-mail: kraljiglic@gmail.com
d e-mail: ales.iglic@fe.uni-lj.si

and their relation to solitary waves. Following the tech-
niques presented in [2], the characterization of homo-
clinic orbits was not present in the calculation of soli-
tary waves in [1]. The authors of [1] should therefore be
grateful to Peets et al. for this insight.

J. P. Boyd defined three conditions for a solitary wave
to be a soliton [4]. He considered a solitary wave to be
a ‘soliton’ as a coherent structure that does not evolve
in time due to a perfect balance between the steepen-
ing effects of nonlinearity and the propagating effects
of wave dispersion. The authors of [1] were not fully
aware of the distinction between ‘soliton’ and ’solitary
wave’ and used these two terms interchangeably. Since
only the first two of the three conditions for a soliton
were met in [1], it therefore seems reasonable to refer to
solitons as solitary waves in [1]. It was not tested in [1]
whether solitary waves can maintain their velocity and
structure after interaction with another soliton, since
this was not within the scope of the study in [1]. In any
case, the authors of [1] should be grateful to Peets et al.
for distinguishing the two terms (‘soliton’ and ’solitary
wave’).

The reference to the nonlinear coefficient seems to
have nothing to do with the model described in [1],
because as many experiments have shown, biological
membranes can also exhibit nonlinear properties due to
their internal macromolecular structure. Consequently,
models that attribute a linear elastic structure to the
membrane are only first approximations [5, 6]. The
bending elasticity of the membrane is used to explain
the dispersion in [1]. The Monge parameterization [7]
of the bending elasticity of a membrane provides the
dispersion term in [1]. The stretching modulus near the
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phase transition is used to determine the nonlinear coef-
ficients a, P, and Q, which are then explained in more
detail in the text [1]. Briefly, P represents the position
of equilibrium at the phase transition when the mem-
brane is at its softest, Q is the offset in ka (u) space
and relates to the calorimetric studies of lipid bilay-
ers (see Fig. 1A in [1]); if cP had no global minimum
at the phase transition, Q would be zero. The param-
eter a is the series expansion coefficient that best fits
the observed data in [2]. Its physical meaning is not
directly related to the structure of the lipids, but to
their thermodynamic properties.

The authors of [1] were unaware of [8] and are there-
fore grateful to Peets et al. for bringing this publication
to our attention. As for the ‘good’ and ‘bad’ Boussinesq-
type equation, this was a lapse [1] and the authors of
[1] agree with the change of sign.

The discussion of Peets et al. about the unipolarity
of solutions can be further clarified by the results of the
measurements of Tasaki et al. [9], who only report the
change in the height of the membrane as a direct con-
sequence of the volume expansion. This effect can be
considered as a non-local phenomenon related to the
local change of curvature and not necessarily affecting
the soliton propagation. This change is also neglected
in the Heimburg–Jackson model [2]. If the difference is
that the longitudinal density change in biomembranes
can be modeled by a unipolar pulse, but the experimen-
tally measured transverse displacement is not unipolar,
this implies that the sign change defining the polarity
should be taken into account in our further develop-
ments. However, it is not clear how this sign change
could be implemented. The fact that transverse and lon-
gitudinal displacements are coupled was also not taken
into account, since only the transverse displacement was
considered in the approximation of the model in [1].
This is appropriate to match the simplicity of the HJ
model, which is also one-dimensional, albeit only in the
longitudinal direction.

In summary, the comments and discussion of Peets
et al. appear to be relevant to improving the technical
considerations of future mathematical/physical models
related to solitary waves in biological membranes, but
not so much to the physical basis of the models pre-
sented in [1, 2]. We hope that experimental evidence
will soon confirm or refute the predictions of [1]. Never-
theless, the authors of [1] are grateful for the comments
of Peets et al. and look forward to new developments
in the field of axonal propagation.
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