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a b s t r a c t

A double nanocapacitor modelled by two equally charged planar surfaces that confine oppositely
charged quanta subjected to Fermi-Dirac statistics is considered theoretically. A global thermody-
namic equilibrium was found by minimization of the Helmholtz free energy satisfying constraints that
require electroneutrality and fixed total number of confined quanta. The solution obtained by using the
Euler–Lagrange method yields self–consistent quantities: distribution of quanta within the pore, electric
potential, equilibrium free energy and differential capacitance. Within real values, a rigorous numerical
solution and an approximate analytical solution for electrons in the low temperature limit was found. The
Fermi–Dirac constraints on the wave functions in the nanopore induced an effect of a diffuse electrical
double layer near both charged surfaces. This effect is comparable to the corresponding effect of entropy

at finite temperatures and for classical particles, as described by the acknowledged Poisson–Boltzmann
theory. At small distances and small surface charges, the electrons are almost evenly distributed within
the pore, while at larger distances they condense to the charged surfaces, shielding the electric field. The
force between the charged surfaces is repulsive and monotonously decreases with increasing distance
between surfaces. The energies stored in the nanocapacitor are up to � 50 eV/nm2.

© 2016 Elsevier Ltd. All rights reserved.
. Introduction

The electric double layer (EDL) is a crucial phenomenon in many
echnological and biological applications. Primarily of interest in
lectrochemistry, the EDL has found use in understanding the inter-
ctions of biological membranes [1,2], while in recent years EDL
lso plays a pivotal role in energy storage technologies. Electro-
hemical nanocapacitors manufactured with nanoporous materials
nd a variety of electrolytes are yielding increasing energy and
ower densities, bridging the gap between batteries and classic
apacitors [3–5]. Electric double layer nanocapacitors were com-
osed from multiple layered (separated by a nanometer distance)
arbon nanotubes in contact with electrolyte [6]. It was indi-
ated that electrochemical double layer capacitors can store large
mounts of energy and deliver high peak power [6].

It was found already a century ago that the capacitance of a

ystem formed by the charged surface and an oppositely charged
iffuse layer varies with electrolyte properties, its concentration,
pplied potential and charge on the surfaces [7,8]. Since then, the

∗ Corresponding author.
E-mail addresses: mitja.drab@zf.uni-lj.si (M. Drab),

eronika.kralj-iglic@zf.uni-lj.si (V. Kralj-Iglič).

ttp://dx.doi.org/10.1016/j.electacta.2016.04.046
013-4686/© 2016 Elsevier Ltd. All rights reserved.
EDL theory was constantly advancing, incorporating ever novel
ways of modelling [9]. One of the first things taken into account
were steric effects induced by the finite sizes of ions [10–12], while
later models include the dipole nature of water in the electrolyte
solution leading to a coordinate-dependent dielectric permittivity
[13,14]. Some models investigated a shift in the capacitance curve
due to the asymmetric sizes of ions [15] and others considered the
electron wave functions in the electrode interface [16].

Interest for nanostructured materials [17–20] requires that
theoretical models of EDL are revisited with possible quantum
effects taken into account. We attempt this in the present paper,
where the effects of quantum statistics are studied through a sim-
ple model of charged quanta confined between two planar charged
surfaces. For this purpose we generalize a previously developed
density functional method for description of the electrical double
layer with the local Helmholtz free energy of the system, and
its minimization by solving the corresponding Euler–Lagrange
variational problem [11].

2. Theory
The model system consists of a single type of negatively charged
quanta (electrons) confined between two large planar yz sur-
faces at x = 0 and at x = d (Fig. 1). Each surface carries a uniformly

dx.doi.org/10.1016/j.electacta.2016.04.046
http://www.sciencedirect.com/science/journal/00134686
http://www.elsevier.com/locate/electacta
http://crossmark.crossref.org/dialog/?doi=10.1016/j.electacta.2016.04.046&domain=pdf
mailto:mitja.drab@zf.uni-lj.si
mailto:veronika.kralj-iglic@zf.uni-lj.si
dx.doi.org/10.1016/j.electacta.2016.04.046
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Fig. 1. A schematic of the model. (A) Probability densities of charged fermions
trapped in a nanopore oppositely charged at its surfaces. (B) Two symmetrically
positioned capacitors are formed, each consisting of a charged surface (at x = 0 and
x = d, respectively), and a diffuse layer created by fermions of the opposite charge
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represented by the hue). The light line represents the electric field profile, and
arameter �0.95 (a bound which encloses 95% of all the quanta of the respective half
f the system) represents the effective thickness of the diffuse layer.

istributed positive charge with surface charge density � ≥ 0. Gen-
ralization to positively charged quanta and negatively charged
urfaces is straightforward. The entire system is electrically neutral.
he quanta are subjected to the constraint on available eigenenergy
tates implied in the Fermi-Dirac statistics while the effect of the
lectric field on the wavefunctions and on the energy states is not
onsidered. These states can be either occupied or unoccupied, with
he average number of quanta in the n-th energy state

n = 1
1 + exp((εn − �)/kT)

, (1)

here � is the Lagrange coefficient for the constraint requiring
xed total number of quanta in the ensemble, k is the Boltzmann
onstant and T is absolute temperature [21]. It is taken that each
uantum is confined in an infinite three dimensional square poten-
ial well so that its energy is

n = n2h2

8ma2
, n = 1, 2, 3, . . . (2)

Here, h is the Planck constant, m is the quantum mass and a is
he extension of the potential well. As there are many quanta in
he system, the energies are assumed to lie close together and the
ummation in the statistical averages can be replaced by integrals.
he average number of quanta is

= 2 · (1/8)

∫
0

∞
4�n2

1 + exp((ε − �)/kT)
dn, (3)

nd the average energy is

= 2 · (1/8)

∫
0

∞
4�εn2

1 + exp((ε − �)/kT)
dn. (4)

The factor 2 comes from specifying quanta as electrons and
onsidering their state degeneration.
The system is divided into thin slices with the area A and width
x, parallel to the yz plane and all fields are considered constant
ithin the slice [11]. In the low temperature limit (T → 0), only the

owest energies up to the Fermi energy � are occupied. There is no
ica Acta 204 (2016) 154–159 155

entropy contribution and we calculate the Helmholtz free energy
of a slice due to Fermi-Dirac wave function symmetry constraints
to electrons ıFsym as

ıFsym = ıE = 3
5

(
h2

8m

)(
3
�

)2/3
(

N

V

)2/3

N. (5)

Summing all of the slices together we obtain

Fsym = 3
5

(
h2

8m

)(
3
�

)2/3
A

∫
0

d

n5/3(x) dx. (6)

Here, we introduced a volume density of quanta,

n = N

Aıx
. (7)

Charged particles and surfaces create an electric field that also
contributes to the free energy of the system, namely the electro-
static energy

Fel = ε0A

2

∫ d

0

E2(x) dx, (8)

where E(x) is the magnitude of the electric field strength and ε0
is the permittivity of vacuum. For simplicity we assumed that
the electric field does not explicitly influence the solutions of the
Schrödinger equation, therefore the total free energy is simply the
sum

F = Fsym + Fel. (9)

To obtain the global thermodynamic equilibrium, the latter
function is minimized with respect to the unknown functions n(x)
and E(x). The constraints of the system are the validity of Gauss law
at each x,

ε0
∂E

∂x
= −e0n(x), (10)

and electroneutrality

e0

∫ d

0

n(x) dx = 2�, (11)

where e0 is the elementary charge. For convenience, dimensionless
quantities marked by tilde are used:

x̃ = x/d, ñ = n/n0, Ẽ = E/E0, (12)

where

n0 = 2�

de0
, �0 = �d

ε0
and E0 = �

ε0
. (13)

With this substitution in place, we drop the tilde and subse-
quently consider all expressions devoid of dimension. The free
energy density values are normalized with the area energy density
of a parallel plate capacitor in a vacuum, which reads

f0 = d�

2ε0
. (14)

The dimensionless Euler-Lagrange function of the system reads

L = ˛n
5
3 (x) + E2(x) − 	(x)

(
∂E(x)

∂x
+ 2n(x)

)
+ 	̃n(x), (15)

where 	(x) and 	̃ are the local and global Lagrangian multipliers,

respectively. The dimensionless constant ˛ is equal to

˛ = 3

5 3√2

(
3
�

)2/3 h2ε0

me5/3
0

1
3√

�d5
. (16)
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he variational problem(∫ 1

0

L(n, E,
∂E

∂x
, x) dx

)
= 0 (17)

s expressed by the system of Euler–Lagrange equations

∂L
∂n

= 0, (18)

∂L
∂E

− d
dx

(
∂L
∂ ∂E

∂x

)
= 0, (19)

nd the above constraints. Considering E = − d�/dx reveals that the
ocal Lagrange coefficient 	 is the electric potential � while the
auss law yields the differential equation for the potential

d2�

dx2

)2/3

=
(

ˇ
√

5
4

)2

(4� − 	̃). (20)

ere,

= 4

√
2
5

(
3

5˛

)3/4
. (21)

Electric field at the midline vanishes due to the symmetry of the
ystem

d�

dx
|x=1/2 = 0, (22)

ith electric potential there being constant. We set the constant
alue to zero at the midline

(x = 1/2) = 0. (23)

The other boundary condition follows from electroneutrality of
he system

d�

dx
|x=0 = −1. (24)

We consider only the real branch of Eq. (20),

d2�

dx2
=
(

ˇ
√

5
4

)3

(4� − 	̃)
3/2

. (25)

We make use of the identity

d2�

dx2

d�

dx
= d

dx

(
d�

dx

)2

. (26)

Introducing a new variable

= 4� − 	̃, (27)

ultiplying both sides of this equation by 2 d�/dx, and integrating
ields

du

dx
≈ −ˇ

(
u2 − u2

1/2

)1/2
, (28)

here we approximated the power obtained from integration 5/2
y 2 by assuming that the above expression, which is analytically

ntegrable, differs from the original function by a negligible amount.
ere, u1/2 is the reduced potential at x = 1/2. Considering that u5/2

1/2 ≤
5/2, the simplified integral (Eq. (28)) can be solved analytically. The
onstant

1/2 = 1

2ˇ sinh( ˇ
2 )

(29)

s determined by considering the reference value of the potential.

he final result for potential in the nanopore yields

(x) = 1

ˇ sinh( ˇ
2 )

(
cosh(ˇ(x − 1

2
)) − 1

)
. (30)
ica Acta 204 (2016) 154–159

The variable parameters in ˇ are the width of the nanopore d, the
surface charge of the surfaces � and the properties of the quanta,
which we take to be electron mass and charge. Density of particles is
derived from the Euler–Lagrange equations and is in direct relation
to the potential,

n(x) = 1
2

d2�

dx2
= ˇ

2
cosh(ˇ(x − 1

2 ))

sinh( ˇ
2 )

. (31)

3. Results and discussion

Eq. (25) was also solved rigorously by the shooting numeri-
cal method with Mathematica software (Wolfram Research, Inc.,
Mathematica, Version 9.0, Champaign, IL (2012)). Fig. 2 shows
that potential monotonously decreases from the charged surface
towards the midline (x = 1/2) (panel A) and that due to electrostatic
attraction electrons accumulate near each of the charged surfaces
(panel B). As they cannot all attain the same energy state near
the surface, they are forced to states of higher energies or to loca-
tions further away from the charged surfaces. Holding the distance
between the charged surfaces at a constant value and changing the
surface charge, we find that at larger distances d and high surface
charge densities � the potential does not change much, while the
particle densities are significant only near the surfaces. This par-
ticle accumulation accounts for effective screening of the electric
field. At lower values of � the electron density is almost constant
throughout the pore (Fig. 2A), but variation of potential is larger
due to the bulk charge accumulated between the surfaces (Fig. 2B).
Differences between the numerical and analytical results are neg-
ligible (Fig. 2A, inset). Matching is best at x = 1/2.

Helmholtz free energy of the EDL is of considerable importance
in colloid and surface sciences as it is used to describe phenomena
such as the spreading pressure of charged monolayers and forces
acting between the charged surfaces [22]. In our model system, the
equilibrium free energy is the integral sum of the contribution due
to symmetry restrictions upon the wave functions of the electrons
and the contribution of the electrostatic field,

f

f0
=
∫ 1

0

(
˛n5/3(x) + E2(x)

)
dx ≈

∫ 1

0

(
˛n2(x) +

(
d�

dx

)2
)

dx

(32)

The power approximation (5/3 →2) is used for purposes of con-
venient analytic treatment while exact rigorous integration was
also performed numerically. Inserting Eq. (30) and Eq. (31) into Eq.
(32) and integrating yields

f

f0
=
(

3
55/3

)(
2
ˇ

)1/3 ˇ + sinh ˇ

sinh2( ˇ
2 )︸ ︷︷ ︸

sym.

+ sinh ˇ − ˇ

2ˇsinh2( ˇ
2 )︸ ︷︷ ︸

el.

. (33)

For small ˇ, we use series expansion to obtain f/f0 = ˛. Fig. 2C
shows that the electrostatic energy increases as the surfaces are
brought apart, and limits to zero at small distances. The energy due
to symmetry constraints diverges towards positive infinity at small
distances. The analytical results coincide well with their numerical
counterparts.

As mentioned in the introduction, a pivotal role concerning
energy storage of EDL capacitors is resumed by the differen-
tial capacitance, resulting in many technological efforts which
are directed towards maximizing its value [23,24]. In a classi-
cal approach, the differential capacitance of the EDL is defined as

[25,26]

C = d�

d�(x = 0)
. (34)
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Fig. 2. (A) Normalized electric potential �/�0 in dependence on x for pore size d = 1 nm and different values of surface charge density. Full line: 0.3 C/m2, dashed line: 0.03 C/m2,
dotted line: 0.003 C/m2. Inset (A) Absolute differences of analytical and numerical solutions. (B) Normalized electron number density n/n0 in dependence on x corresponding
to the parameter values in panel A. (C) Free energy of the system f (Eq. (33), full line) and its contributions: energy due to antisymmetric wavefunctions of electrons (full gray
line) and electrostatic energy (dashed gray line). Also shown is free energy calculated using the Poisson-Boltzmann theory for T = 300 K (Eq. (43)), (dashed line). In both cases
surface charge density is � = 0.03 C/m2. Inset (C) A detail of the full black and dashed curves in a log-log scale fitted with the function axb with specified power as indicated
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n the inset. (D) Analytic differential capacitance d�/d�(x = 0) (Eq. (38), full line) and
Eq. (44), dashed line) at pore size d = 1 nm and T = 300 K. Electric potential and electr
ith respect to the midline.

Here �(x = 0) is the potential at x = 0 in unit V. By inserting x = 0
nto Eq. (30), we obtain the dependence of �(x = 0) on ˇ. Since we

ant to differentiate by �, we write

= Ãd5/4�1/4, (35)

here Ã is defined by universal constants,

˜ = 4
√

�

15

(
2me5/3

0

h2ε0

)3/4

. (36)

he potential at x = 0 (in unit V) is

(x = 0) = K1�3/4

K2 sinh( K2�1/4

2 )

(
cosh(

K2�1/4

2
) − 1

)
. (37)

Here, K1 = d/ε0 is in unit V, while K2 = Ãd5/4. We make use of
mplicit differentiation by d/d�(x = 0),

d�

d�(x = 0)
= 16K2cosh2( K2�1/4

4 )�1/4

6K1 sinh( K2�1/4

2 ) + K1K2�1/4
. (38)

Numerically, we transpose the dependency �(x = 0)(�) and dif-
erentiate.

We compare the results with the results of the acknowledged
oisson-Boltzmann theory where at finite temperature the quanta
re distributed over the energies according to the Boltzmann distri-
ution [21] sn = exp(−εn/kT) and the entropic term is considered

n the free energy. This is reflected in the partition functions and,
ccordingly, the Lagrange function of the system. Using an analo-
ous approach and the same constraints upon the system as above

e derive the differential equation for the electric potential

d2�

dx2
− B exp(

4�



) = 0, (39)
rresponding differential capacitance calculated by the Poisson - Boltzmann theory
mber density are shown for one half of the system, the dependencies are symmetric

where


 = 4kTε0

de0�
, (40)

and B is a constant. We do not present the procedure to solve
Eq. (39) in detail here as a very similar formalism has previously
been considered in an electrolyte [27]. The dimensionless electric
potential in this case is

�(x) = 


4
ln
(

1 + tan2(�(
1
2

− x))
)

, (41)

where it was chosen that �(x = 1/2) = 0. The constant � was deter-
mined from the boundary condition at the charged surface, which
yields the equation

�

2
tan(

�

2
) = 2



, (42)

which was solved numerically for �. The equilibrium free energy is

f

f0
= 
 ln

(
�K

e2 sin �

)
+
(

�


2

)2
(43)

where K = (h2/2�mkT)
3/2

�/ede0. The differential capacitance is

d�

d�(x = 0)
= e0

kT

(
tan(

�

2
)

d�

d�

)−1

. (44)

In need of a measure of particle density near the charged surface,
we define an effective thickness of the electric double layer at �ω

within which there is ω% of all electrons. Since the number density
function n(x) is symmetrical to the midline x = 1/2, the effective
thickness is calculated by finding the upper bound of the integral �ω .

We chose ω = 0.95 in line with the definition of electronic orbitals,∫ �ω

0

n(x) dx = ω

2
. (45)
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Fig. 3. (A) Electric potential at the charged surface �(x = 0) (in units V), (B) number density of electrons at the charged surface n(x = 0), (C) free energy of the electric double
layer f and (D) differential capacitance of the electric double layer d�/d�(x = 0), in dependence on the area density of charge �. All quantities are calculated for two pore
sizes ((d = 1 nm) - full lines and (d = 0.1 nm) - dotted lines). Black lines pertain to the model taking into account the quantum statistics and gray lines pertain to the Poisson -
Boltzmann theory at T = 300 K.
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It can be seen in Fig. 2C that the values of free energy of the sys-
em subjected to quantum statistics in the low temperature limit
re of the same order of magnitude as the corresponding values
btained by the Poisson-Boltzmann theory at room temperature.
oreover, the quantum statistics effects indicate higher energy

tored in the capacitor. Due to quantum constraints, the electrons
re less effective in shielding the electric field so that the effec-
ive thickness of quantum EDL is larger and the electric field in
he capacitor is on average larger. The differential capacitance of
he two models shows a monotonous increase with the potential
t the charged surface (Fig. 2D) and values within the same order
f magnitude in both models, however, the curves have different
hapes due to different dependencies of the electric field on the
urface charge density and the distance between the surfaces.

Fig. 2C shows that the electrostatic energy increases as the sur-
aces are brought apart, and approaches zero at zero distance. The
nergy due to symmetry constraints behaves differently: at d = 0 it
iverges towards positive infinity. The analytical results coincide
ell with their numerical counterparts (Fig. 2). Both analytical and
umerical functions are symmetric around the midplane x = 1/2. For
mall ˇ, we use series expansion of the hyperbolic sine to obtain
/f0 = ˛. For large ˇ, the expression limits to zero. However, at cho-
en d, the slope of the f(d) curve is different in both models (inset
f Fig. 2C).

Fig. 3C shows dependencies of the electric potential at the
harged surface �(x = 0) (in units V) (Panel A), number density of
lectrons at the charged surface n(x = 0) (Panel B), free energy of
he electric double layer f (Panel C) and differential capacitance of
he electric double layer d�/d�(x = 0) (Panel D), in dependence on
he surface charge density �. All these quantities monotonously
ncrease with increasing surface charge density. The antisymmetry
f the wavefunctions imposes stronger constraints upon the accu-
ulation of the quanta near the charged surface and consequently

revents them to shield the electric field. Therefore, the electric
eld protrudes further in the direction from the charged surface

Fig. 4). As larger surface charge means larger number of electrons
n the system (to satisfy electroneutrality), also the energy of the
ystem increases with increasing �.
It can be seen in Figs. 3B, C and D that the curves pertaining to
the Poisson-Boltzmann theory are almost identical, owing to the
condensation of quanta to the surfaces. As almost all quanta are in
the near vicinity of the charged surface, shielding of the charged
surface is very effective and the contribution of the space around
the midplane (if enlarged beyond certain distance) to the relevant
quantities is negligible.

Unlike in the ideal gas model, where the particles are explicitly
considered independent, the particles in a system obeying quan-
tum statistics are necessarily interacting: fermions are subjected
to the Pauli exclusion principle due to the asymmetry of the wave-
functions, which has been taken into account in the model by the
formulation of the free energy. In the model, the electrostatic inter-
action is considered within the mean field approximation. This
means that the charged surfaces as well as the spatially distributed
charges have effects through the solution of the variational problem
including the Gauss law and the boundary conditions. The effect of
the electric field on the wavefunctions is not taken into account.
As we wanted to focus on the effect of quantum statistics, we con-
sidered the electric interaction by simplest possible means. This
enabled almost analytical and therefore transparent solution of
the problem as regards the dependencies of the relevant quantities
on the surface charge, distance between the charged surfaces and
quanta mass. The next step would be consideration of the effect of
the electric field on the solution of the Schrödinger equation, other
possible confinement potentials and finite temperatures.

By using a square well model we have shown that nano - sized
diffuse electric double layer which stores energy can be formed due
to constraints on the eigenfunctions of fermions (electrons). Con-
sideration of antisymmetry of wave functions expands the electric
double layer, causes the electric field to protrude further from the
charged surface, evens the distribution of quanta and increases the
effective thickness of the electric double layer. The effect on the dif-
ferential capacitance is however more complex and depends also
on other model parameters. Including anisotropy of the potential

well, effects of the electric field on the solution of the Schrödinger
equation and finite temperatures would improve the description
but would not change this major qualitative result.
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Fig. 4. Electric field in the direction perpendicular to the charged surface E in dependence on x for (A) � = 0.3 C/m2 and (B) � = 0.03 C/m2, where in both cases, d = 1 nm.
Effective thickness of the electric double layer �0.95 in dependence on (C) surface charge density � for two pore sizes ((d = 1 nm) - full lines and (d = 0.1 nm) - dotted lines),
a ((� =
p ain to
t g. 1).
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equation: point-like ions and water dipoles near a charged surface, Gen. Physiol.
Biophys. 30 (2011) 130–137.
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