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Abstract

 

The biomechanical role of the horseshoe geometry of the acetabular cartilage is described using a three-

dimensional mathematical model. It is shown that the acetabular fossa contributes to a more uniform articular contact

stress distribution and a consequent decrease in the peak contact stress. Based on the results it is suggested that

the characteristic horseshoe shape of the articular cartilage in the human acetabulum optimizes the contact stress

distribution in the hip joint.
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Introduction

 

The human hip joint is a spherical joint where the

spherical bone surfaces of femur and acetabulum,

which are covered by cartilage, are in close contact. The

cartilage covers almost all the femoral head whereas

the central and inferior part of the acetabulum, i.e. the

acetabular fossa, is not covered by cartilage (Petersilge,

2000). The acetabular articular cartilage therefore

attains a characteristic horseshoe-shaped structure

called the facies lunata.

It is generally accepted that mechanical loading is an

important factor influencing development of the carti-

lage (see Daniel et al. 2003, and references therein).

The shape of the cartilage thus influences the mechan-

ical conditions in the hip. In previous biomechanical

studies the specific shape of the articular cartilage was

either not studied (Legal, 1987; Igli

 

C

 

 et al. 2002) or fixed

(Genda et al. 2001). This study was intended to estim-

ate how the contact stress distribution in the human

hip joint is influenced by the characteristic horseshoe

shape of the acetabular cartilage.

 

Methods

 

To estimate the contact stress distribution in the hip joint,

the resultant force transmitted between the femoral

head and acetabulum (

 

R

 

 = (

 

R

 

x

 

, R

 

y

 

, R

 

z

 

)) should be known.

To assess the value of 

 

R

 

, a biomechanical model of the

human hip was used in order to solve equilibrium equations

for moments and forces acting on the pelvis in a one-

legged stance (Igli

 

C

 

 et al. 2002). The one-legged stance

was chosen as a representative body position, frequently

attained in everyday activities (Daniel et al. 2001).

The origin of the coordinate system was chosen in

the centre of the acetabular shell so that 

 

x

 

 and 

 

z

 

 axes

lie in the frontal plane and the 

 

y

 

 and 

 

z

 

 axes in the

sagittal plane of the body (Fig. 1A). In the one-legged

stance, the hip joint resultant force 

 

R

 

 lies almost in the

frontal plane of the body (Igli

 

C

 

 et al. 2002). Therefore,

the force 

 

R

 

 can be expressed as:

 

R

 

 = (

 

R

 

 sin 

 

ϑ

 

R

 

, 0, 

 

R

 

 cos 

 

ϑ

 

R

 

) (1)

where 

 

ϑ

 

R

 

 is the inclination of 

 

R

 

 with respect to the

saggital plane (Fig. 1A). Using the above-mentioned
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biomechanical model, it was found that for a human

with reference geometry of the hip and a body weight

of 800 N: 

 

R

 

 = 2160 N and 

 

ϑ

 

R

 

 = 5

 

°

 

 (Igli

 

C

 

 et al. 2002).

In order to calculate the contact stress distribution

for given 

 

R

 

 and 

 

ϑ

 

R

 

, we adapted a previously developed

three-dimensional mathematical model (Daniel et al.

2001; Igli

 

C

 

 et al. 2002). Within the model it is assumed

that the spherical femoral head and hemispherical

acetabulum are covered by a cartilage layer of constant

thickness. When unloaded, the articular surfaces of the

femoral head and acetabulum have the same radius 

 

r

 

and are congruent. Upon loading, the femoral head is

moved toward the acetabulum and the cartilage in the

hip joint is squeezed. Assuming that the hip joint is well

lubricated, we take into account that the tangential

stresses in the articular surface of the hip joint are neg-

ligible (Legal, 1987). Hence, only compressive, i.e. radial

stresses (

 

p

 

), are considered in our model. If the cartilage

is considered as a linear elastic material, then according

to Hooke’s law the contact stress in the cartilage layer

is proportional to displacement of the femoral head

with respect to the acetabulum. Assuming a spherical

shape of both joint surfaces, there is only one point

where the surfaces of the acetabulum and the femur

are closest. We define this point as the pole of stress

distribution (

 

P

 

) (see Fig. 1). The deformation of the

cartilage and the corresponding radial stress (

 

p

 

) at any

point of the articular surface is proportional to the

cosine of the angle between this point and the pole of

the stress distribution (Brinckmann et al. 1981):

 

p

 

 = 

 

p

 

0

 

 cos 

 

γ

 

(2)

where 

 

p

 

0

 

 is the stress at the stress pole. The contact

stress integrated over the articular surface  should

be equal to the force transmitted through the hip

joint 

 

R

 

:

(3)

where 

 

A

 

 is the area of non-zero contact stress, i.e. the

weight-bearing area. Equations (3) represent a system

of three integral equations for three unknown quanti-

ties: the azimuthal angle (

 

Φ

 

) and polar angle (

 

Θ

 

), which

determine the position of the stress pole, and the value

of 

 

p

 

0

 

. The values 

 

R

 

 and 

 

ϑ

 

R

 

 

 

(

 

see Eq. 1) are input data cal-

culated as described above. Because the force 

 

R

 

 lies in

the frontal plane, which is also the plane of symmetry

of acetabular shell, it follows from the second of Eqs (3)

that 

 

Φ

 

 = 0, which means that the stress pole must lie in

the frontal plane (Igli

 

C

 

 et al. 2002). The position of the

stress pole in the frontal plane, given by its inclination

from the sagittal plane (

 

Θ

 

), and 

 

p

 

0

 

 are then determined

from the first and third of Eqs. (3). The angle 

 

Θ

 

 is

denoted positive if the pole is on the lateral side of the

frontal plane and negative if the pole is on the medial

side. The weight-bearing area is bounded at the lateral

side by the acetabular rim. The medial boundary of the

weight-bearing area is not known in advance but is

calculated from the condition of vanishing stress

(cos 

 

γ

 

 = 0). The medial border depends on the value of

 

Θ

 

 because it consists of all points lying at an angular

distance of 90

 

°

 

 from the stress pole. The hemispherical

acetabular shell is taken to be inclined at an angle 

 

ϑ

 

CE

 

in the lateral direction (Fig. 1A), and no acetabular

anteversion was taken into account.

To understand better the basic mechanism of the

stress distribution in the mathematical model

described above, Fig. 2 shows schematically the stress

distribution in the hip joint articular surface for two

Fig. 1 Schematic presentation of the 
coordinate system (A) and geometrical 
model of the articular cartilage (B). In 
the model the x–z plane is identical with 
the frontal plane and the y–z plane 
with the sagittal plane. Inclination of the 
acetabulum (ϑCE), the direction of the force 
R (ϑR) and position of the stress pole P, 
given by angle Θ, are denoted. The angle 
ϑ0 defines the size of the acetabular 
fossa, and r denotes the radius of the 
articular surface. The axis of symmetry of 
the hemispherical acetabular shell and 
the frontal plane are also denoted.
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different orientations of the acetabulum, in both cases

without the acetabular fossa. The hip joint resultant

force 

 

R

 

 divides the acetabular surface into two parts.

The lateral part is bounded by the lateral acetabular

rim and by the plane of the force 

 

R

 

 inclined by the

angle 

 

ϑ

 

R

 

 with respect to the sagittal plane of the body

(area I in Fig. 2), whereas the medial part consists of the

rest of the acetabular surface (area II in Fig. 2). The sum

of the resultant force of the contact stress transmitted

through the lateral part of the acetabular surface and

the resultant force of the contact stress transmitted

through the medial part of the acetabular surface

should be equal to the total resultant force 

 

R

 

. If the

available areas of both parts of the acetabular surface

are equal, the direction of the stress pole coincides with

the direction of the force 

 

R

 

 (Fig. 2A). However, in the

normal hip, the acetabulum is rotated in the medial

direction (Fig. 2B) with respect to the situation pre-

sented in Fig. 2(A) and therefore the available weight-

bearing area of the lateral part (area I) is smaller than

the weight-bearing area of the medial part (area II)

(Fig. 2B). Because the integral of the contact stress over

the complete weight-bearing area must give the result-

ant hip force 

 

R

 

 (Eqs 3), the contact stress should on

average be higher in region I than in region II of the

weight-bearing surface (Fig. 2B). In the case of the

cosine stress distribution function (Eq. 2), this means

that the pole of the stress distribution should be located

laterally with respect to the direction of force 

 

R

 

.

The fact that the direction of the peak contact stress

does not coincide with the direction of the hip joint

resultant force 

 

R

 

 has also been confirmed in different

experimental studies (Brown & Shaw, 1983; Hodge

et al. 1989). As shown in Fig. 2B, the lateral position of

the stress pole with respect to the direction of 

 

R

 

 pro-

vides a non-uniform stress distribution. A strongly non-

uniform stress distribution is evident in dysplastic hips

where the small lateral coverage of the femoral head

by the acetabulum strongly increases the above-

mentioned asymmetry in areas I and II (Pauwels, 1976;

Mav

 

C

 

i

 

C

 

 et al. 2002).

In the model used hitherto (Igli

 

C

 

 et al. 2002), it was

assumed that the whole hemispherical shell of the

acetabulum is covered by cartilage. Within the present

work the geometry of the acetabular cartilage was

modified by introducing a non-weight bearing area

on the hemispherical shell of the acetabulum. This

non-weight-bearing area represents the cartilage-free

region of the acetabulum, i.e. the acetabular fossa

(Fig. 1B).

In our mathematical model, the acetabular fossa is

taken to be symmetrical with respect to the frontal

plane. The frontal plane of the body is also a plane of

symmetry of the acetabular shell, dividing the aceta-

bulum into anterior and posterior parts (Fig. 1B).

Another plane perpendicular to the frontal plane and

parallel to the sagittal plane divides the acetabular

shell into a lateral part and a medial part (Fig. 1B). In

the lateral part the circular rim of the acetabular fossa

consists of all points that have angular distance 

 

ϑ

 

0

 

 from

the axis of symmetry of the complete hemispherical

acetabular shell (Fig. 1B). In the medial part of the

acetabular shell, the rim of the acetabular fossa con-

sists of all points that have a constant angular distance

 

ϑ

 

0

 

 from the frontal plane (Fig. 1B). The above paramet-

ric definition of the rim of the acetabular fossa allows

us to model the typical horseshoe shape of cartilage in

the hip joint articular surface. For a chosen value of 

 

ϑ

 

0

 

 the

solution of the above integral Eqs. (3) then gives us the

values of contact stress at the pole (

 

p

 

0

 

) and the posi-

tion of the stress pole, determined by the angle 

 

Θ

 

. If

the stress pole lies inside the weight-bearing area then

Fig. 2 Schematic figure of the stress 
distribution acting on the articular 
surface for two different rotations of the 
acetabulum. If the hemispherical contact 
articular surface is symmetric with 
respect to the force R (A), the stress pole 
coincides with the direction of the 
resultant force R. If the acetabulum is 
rotated in the medial direction (B), the 
stress distribution is asymmetric with 
respect to the direction of the resultant 
force (R) and the stress pole is moved to 
region I.
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the peak contact stress (

 

p

 

max

 

) is equal to p0. If this is not

the case, the point of maximal stress is the point on the

rim of the weight-bearing area that is closest to the

stress pole.

Results

Taking into account the above model for the geometry

of the cartilage layer in the hip joint, we studied the

dependence of the hip joint peak contact stress (pmax),

the position of the stress pole (Θ) and the size of the

weight-bearing area (A) on the size of the acetabular

fossa determined by the angle ϑ0 (Fig. 3). It can be seen

in Fig. 3 that pmax decreases with increasing ϑ0 until it

reaches its minimum at ϑ0 = 29°. Further increase in the

size of the acetabular fossa is no more favourable

because it considerably increases the peak contact

stress (Fig. 3A). Figure 3 also shows that the pole of the

stress moves medially while the size of the weight-

bearing area decreases with increasing values of ϑ0

(Fig. 3B,C).

In Fig. 4, the contact stress distributions in the frontal

plane and the size of the weight-bearing area for three

selected sizes of the acetabular fossa are shown sche-

matically. The projection of the weight-bearing area

on the frontal plane is marked by cross-hatching. The

case when ϑ0 = 0° corresponds to acetabular cartilage

that has a hemispherical shape, i.e. the cartilage layer

without the acetabular fossa (Fig. 4A). It can be seen in

Fig. 3A that without the acetabular fossa the contact

stress distribution would be less uniform with maximal

stress located close to the lateral acetabular margin.

The predicted uniform stress distribution due to the

acetabular fossa is in good agreement with the con-

tact stress distribution estimated from the density of

the bone structures in radiographs of healthy hips

(Pauwels, 1976).

Discussion and conclusions

The contact stress distribution in the human hip is con-

sidered to be an important factor influencing the

development of the hip. In the present work, we have

shown that the specific horseshoe shape of articular

cartilage in the human hip joint decreases the peak

contact stress (Fig. 3A) and renders the stress distribu-

tion more uniform (Fig. 4).

The influence of the acetabular fossa on the contact

stress distribution can be viewed as the interplay of the

influence of two parameters: the direction of the

resultant force R and the geometry of the articular car-

tilage. The acetabular fossa represents the part of the

articular surface that cannot bear weight. It is located

medially with respect to the direction of the resultant

force R, i.e. in region II (Fig. 2B). If the area of the

acetabular fossa is not too large, the acetabular fossa

renders the weight-bearing area more symmetric with

respect to the direction of the resultant force R. The

Fig. 3 Dependence of the peak contact stress pmax (A), the 
position of the stress pole Θ (B) and the size of the weight-
bearing area A (C) on the size of the acetabular fossa 
determined by the angle ϑ0. The values of the model 
parameters are: R = 2000 N, ϑR = 5°, ϑCE = 30° and r = 2.7 cm.
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increased symmetry of the articular surface due to

the acetabular fossa moves the stress pole medially

towards the force R (Fig. 3B). Consequently, the

weight-bearing area is also extended in the medial

direction (Fig. 4). However, such spreading of the

weight-bearing area medially is not large enough to

compensate for the reduction in the weight-bearing

area due to the non-weight-bearing area of acetabular

fossa (Fig. 4). Therefore, the effect of stress decrease

due to the acetabular fossa cannot be explained as an

outcome of the possible increase in the weight-bearing

area (see also Fig. 3C). To explain the decrease of stress

due to the acetabular fossa, the stress redistribution

from the acetabular fossa should be considered (Fig. 4).

Figure 4B shows that the predicted medial shift of

the stress pole (white spot) after an increase in the size

of the acetabular fossa increases the region of high

stress around the stress pole, as the stress pole was

moved from the lateral acetabular rim. Hence, the

contact stress is distributed more uniformly (Fig. 4B) and

the peak contact stress is decreased (Fig. 3A). However,

further increase in the size of the acetabular fossa (i.e.

of the angle ϑ0) moves the pole of stress closer to the

medial acetabular rim (i.e. closer to the rim of the

acetabular fossa). Hence, the available weight-bearing

area around the stress pole is reduced in size again

(Fig. 4C) and the peak contact stress is consequently

increased (Fig. 3A).

To conclude, the horseshoe geometry of the articular

cartilage contributes to a lower and more homogene-

ously distributed hip joint contact stress, which may be

important in various ways. It has been suggested that

long-term elevated contact stress may cause damage to

the cartilage (Hadley et al. 1990; Daniel et al. 2003) and

therefore the decrease in stress due to the acetabular

fossa may contribute to prevention of cartilage dam-

age. It has also been suggested that variation of the

magnitude of the contact stress distribution over the

Fig. 4 The contact stress distribution projected on the transverse plane (upper figures) and on the frontal plane (lower figures) 
for various sizes of the acetabular fossa determined by the angle ϑ0. In the upper figures, the position of the stress pole is denoted 
by the white spot. In the lower figures, the grey area is the projection of the cartilage on the frontal plane, and the white area 
in the acetabulum represents the acetabular fossa. The weight-bearing area is marked by cross-hatching. The position of the peak 
contact stress (pmax) and stress pole (Θ) are denoted. The values of the model parameters are as in Fig. 3.
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articular surface may be even more important for

cartilage longevity than the value of the peak stress

(Brand et al. 2001; Pompe et al. 2003). The effect of

stress redistribution caused by the specific horseshoe

shape of the articular cartilage can therefore play an

important role in cartilage development and longevity.

The articular cartilage is an avascular structure for

which the process of loading and unloading and conse-

quent flow of the interstitial fluid is crucial in nutrition

(Nordin & Frankel, 1989). The existence of the aceta-

bular fossa increases the percentage of the loaded

articular cartilage (Fig. 4), i.e. the proportion of the

cartilage where nutrition is ensured.

In the mathematical model described, several simpli-

fications were used that could influence the accuracy of

the calculated contact stress distribution. For example,

in our model the femoral head and acetabulum are

taken to be spherical. In normal hips the femoral head

and the acetabulum are actually out-of-round by 1–3 mm.

It has be shown that in the case of an ellipsoidal arti-

cular surface with the semi-axes r and r + ∆r, the cosine

stress distribution function (Eq. 2) can be modified by

taking into account the perturbation of the first order

in ∆r/r, which yields the stress distribution function in

the form p = p0 cos γ(1 + 3(∆r/r) sin2 γ) (Ipavec et al. 1999).

Our mathematical model derivation also assumes that

the cartilage layer has constant thickness and mechanical

properties. The contact stress was assumed to be pro-

portional to the cartilage deformation δ. If the proper-

ties of the cartilage vary along the articular surface, the

contact stress at a given point also varies, and this is not

taken into account in our model. The spatial variations

in the mechanical properties and thickness of the carti-

lage modify the local values of the stress, which may

explain the considerable variation in the hip contact

stress distribution measured in different experimental

studies (Brown & Shaw, 1983; Afoke et al. 1987).

The mechanics of the cartilage layer in the hip joint

obviously cannot be fully described as a homogeneous

continuum and a linear elastic material. In order to

approach a more realistic description of the stress and

force distribution in the cartilage layer, one should

take into account the specific molecular structure of

the joint articular surface where the two glycoprotein

monolayers are adsorbed on the cartilage of both con-

tact surfaces (Nordin & Frankel, 1989). The mechanics

of this structure could be realistically described only by

using the methods of theoretical physics on the mole-

cular level developed in the field of polymer physics and

the statistical physics of interfaces (see, for example,

Butt et al. 2003).

During different activities the hip joint resultant

force can attain various directions and magnitudes

(Bergmann et al. 2001), whereas in this study only a

static one-legged stance was considered. The study of

the influence of the acetabular fossa on the contact

stress distribution should therefore be evaluated in

future studies during other activities besides a one-

legged stance, such as walking up a set of stairs.

The accuracy of the contact stress distribution pre-

dicted here could certainly be improved by removing

some of the above-mentioned simplifications assumed

in our mathematical model. However, we believe that

the main conclusions of our work, i.e. that the acetabular

fossa contributes to a lower and more uniform stress

distribution in the hip joint, would not be changed by

using a more advanced mathematical model. The spe-

cific shape of the facies lunata can therefore be consid-

ered as an important factor that optimizes the contact

stress distribution in the hip joint.
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