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Abstract

The stability of torocyte red blood cell daughter endovesicles induced by octaethylene-glycol dodecylether (C12E8)
was studied theoretically. In addition, the effects of C12E8 and tetraethylene-glycol dodecylether (C12E4) on physical
properties of the red blood cell membrane were studied experimentally, using the electron spin resonance (ESR)
technique. In the theoretical part, it was assumed that the stable vesicle shape corresponds to the minimum of its
membrane free energy, which is the sum of the membrane bending energy and the contribution of the C12E8-induced
membrane inclusions. We found that the torocytic vesicle shape may be stable due to quadrupolar ordering of the
C12E8 anisotropic inclusions that are embedded in the vesicle membrane. It was also shown how a preference of the
membrane inclusions for a specific membrane curvature might lead to their non-homogeneous lateral distribution. In
the experimental part, it was shown that C12E4 drastically changes the proportions of the membrane lipid domains
(characterized by different ‘fluidity’), while C12E8 induces much smaller changes in the proportions of the domains.
A possible relation between the difference in the effects of C12E8 and C12E4 on the membrane lipid domains, and their
distribution between the membrane leaflets, is discussed. © 2002 Published by Elsevier Science B.V.
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1. Introduction

We have recently reported [1] that the non-
ionic surfactant octaethylene-glycol dodecylether

(C12E8) (Fig. 1) may induce in erythrocytes stable
torocyte endovesicles having a thin plate-like cen-
tral region and a toroidal periphery (Fig. 2). It
was suggested that the torocyte endovesicle origi-
nates from a large stomatocytic invagination of
the erythrocyte membrane, which looses volume
and finally forms a toroidal endovesicle. Since
intercalation of C12E8 into the membrane induces
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Fig. 1. Schematic illustrations of the chemical structure of
octaethylene-glycol dodecylether (C12E8) (A) and of te-
traethylene-glycol dodecylether (C12E4) (B).

elasticity models of the bilayer membrane [7,8,4],
the calculated torocyte vesicle shapes, corre-
sponding to the minimal bending energy, have a
thin central region where the membranes on
both sides of the vesicle are in close contact, i.e.
the resultant forces on both membranes in con-
tact are balanced [2,6]. However, as it was
shown by the confocal laser scanning mi-
croscopy [1] and as it can also be seen by the
transmission electron microscopy (Fig. 2), the
adjacent membranes in the flat central region of
the torocyte are separated by a certain distance
indicating that the stability of the observed toro-
cyte shapes of the erythrocyte endovesicles can
not be explained by the standard bending elas-
ticity model. Therefore it is of interest to under-
stand which additional mechanisms (beside the
minimization of the membrane bending energy)
might take place in the shape determination of
the C12E8 induced torocyte endovesicles.

Three partly complementary mechanisms were
suggested in order to explain the formation and
stability of the observed torocyte endovesicles
[1,2]. The first is a preferential intercalation of
the C12E8 molecules into the inner membrane
layer, resulting in a membrane invagination that
may finally close, forming an inside-out en-
dovesicle. The second mechanism is a preference
of the C12E8 induced membrane inclusions (dy-
namic co-operative units composed of the em-
bedded C12E8 molecule and adjacent membrane
constituents that are significantly distorted due
to the presence of the embedded C12E8

molecule) for zero or slightly negative [1,2] local
mean curvature. Such inclusions would induce
the vesicle shape with large regions of zero or
slightly negative membrane mean curvatures.
The third mechanism is the orientational order-
ing of anisotropic C12E8 membrane inclusions in
the regions of nonzero local membrane curva-
ture deviator [1,2]. The aim of the present work
is to investigate the role of these mechanisms in
explaining the origin and stability of the toro-
cyte endovesicle shape.

The paper is organized as follows. Materials
and methods used in ESR experiments and the

stomatocytosis (inward membrane bending) and
endovesiculation, it was assumed that C12E8

should be located mostly in the inner leaflet of
the erythrocyte membrane, i.e. in the outer
leaflet of the torocyte endovesicle membrane
[1,2].

Although the phase diagram of the stable
shapes of the vesicles and the cells with no in-
ternal structure has been extensively studied in
the past [3–5], aside from a few works [6,2] the
torocyte and codocyte shape classes were not
given attention. Within the standard bending

Fig. 2. Transmission electron micrograph of torocyte endovesi-
cles of human red blood cells incubated with C12E8 (adapted
from Bobrowska-Hägerstrand et al. [1]).
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corresponding methods for interpretation of the
measured results of ESR experiments are de-
scribed in Section 2. The expressions for the free
energy of the membrane inclusions and for their
lateral distribution are derived in Section 3. In
Section 4.1, the mathematical model that is used
for the theoretical study of the stable torocyte
endovesicle shapes is described and the predic-
tions of the model are given. The experimental
results from the ESR measurements are reported
in Section 4.2. In Section 5, the conclusions are
drawn from both experimental and theoretical
results. The possible origins of anisotropy of the
C12E8-induced inclusions and of the asymmetric
distribution of the C12E8 molecules between both
membrane leaflets are discussed. The interdepen-
dence between the stable vesicle shape and the
non-homogeneous lateral distribution of C12E8-in-
duced inclusions is also discussed.

2. Materials and methods

2.1. Preparation of erythrocytes and spin labelling
of erythrocytes

The cell pellet, 0.2 ml, was dispersed in 6 ml
phosphate buffered saline (PBS), transferred into
the glass test tube containing 3.0 nmol of the spin
probe methyl ester of 5 dioxyl palmitate
(MeFASL(10,3)) [9] and deposited on the walls. A
total of 13.2 ml of PBS for the control or 13.2 ml
of PBS containing dissolved CmEn was added and
all together exposed for 10 min. The sample was
centrifuged for 4 min and the pellet was trans-
ferred into a glass capillary (inner diameter 1
mm).

2.2. Measurement and simulation of membrane
spectra

The electron spin resonance (ESR) spectra were
recorded on the Bruker ESP 300 X-band spec-
trometer at 37 °C. The spectra were recorded at
9.6 GHz microwave frequency and 20 mW power.
The modulation frequency and amplitude were
100 kHz and 2.0 gauss. The magnetic scan range
was 100 gauss and the scan time was 168 s. The

molar ratio between the membrane spin probe
and the phospholipids was about 1/100. The mea-
sured spectra of the spin probe in the erythrocyte
membrane are superimpositions of spectra of the
spin probes dissolved in particular coexisting lat-
eral membrane domains [9,10]. Therefore, the ex-
perimental spectra are fitted by the calculated
spectra. Three lateral domain types have been
assumed. For each type of spectra the correspond-
ing parameters of the spin Hamiltonian function
have been selected. The averaged interaction ten-
sor components have been calculated for the
properly chosen characteristics of the particular
domain, i.e. the molecular ordering of the lipid
acyl chains, the rotational correlation times and
the polarity corrections due to the alterations of
the electronic structure induced by the polarity of
the nitroxide environment. The orientation order
parameter S describes the alignment of the lipid
hydrocarbon chains in the membrane, i.e. a
stronger ordering of molecules can be described
by higher values of S. Herewith the hyperfine
splitting of lines in the spectrum can be directly
modified. On the other hand, the line widths
depend on the rotational correlation time �, which
reflects the rate of molecular angular deflections
of the fluctuating molecular segment, bearing the
nitroxide in conformity with the mobility of the
neighbouring lipid molecules. The line widths of
the spectra are additionally modified by the inher-
ent unresolved hyperfine splitting of the paramag-
netic nuclei of the near hydrogen atoms. The
polarity corrections due to the membrane regions
influence the g an A tensors [11], describing the
already mentioned shifts and hyperfine splitting of
the spectral lines via the displacement of the
unpaired electrons of the nitroxide, that perturbs
the wave functions describing the electronic struc-
ture of the spin probe.

The optimization of the typical coexisting lat-
eral domains in the proportion set by the popula-
tion weight parameters and the corresponding line
shape parameters was performed for the evalua-
tion of the particular domain’s spectra. The pro-
gram EPR SIM 4.0 was used to solve the
described inverse optimization problem. The de-
tails are described in Ref. [11].
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3. Theory

3.1. Free energy of the membrane inclusions

The anisotropic membrane inclusion in the cur-
vature field of the membrane is considered. It is
taken that the inclusion has a C2 group symmetry
with respect to the axis normal to the membrane
surface.

Let us imagine that there exists a membrane
shape that would perfectly fit the inclusion. This
shape is referred to as the membrane shape intrin-
sic to the inclusion. In general, the local mem-
brane shape at the site of the inclusion differs
from the shape intrinsic to the inclusion. The
energy of the inclusion is defined as the energy
that is spent by adjusting the inclusion into the
membrane. Let C1 and C2 be the membrane prin-
cipal curvatures at the site of the inclusion and
C1m and C2m the principal curvatures of the shape
intrinsic to the inclusion [12]. The energy of a
single inclusion can be approximated by the ex-
pression [13]:

E=
�

2
(C−Cm)2

+
�+�*

4
(C� 2−2C� C� m cos(2�)+C� m

2 ) (1)

where � and �* are the constants representing the
strength of the interaction between the inclusion
and the surrounding membrane [13,12], C=
(C1+C2)/2, C� = (C1−C2)/2, C� m= (C1m+C2m)/2,
C� m= (C1m−C2m)/2 and � is the angle between
the principle directions of the local membrane
shape and the corresponding principle directions
of the shape intrinsic to the inclusion.

The partition function q of the single inclusion
is [14]
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where �0 is an arbitrary angle quantum, k is the
Boltzmann constant and T is the temperature. In
the partition function of the inclusion the contri-
bution of the orientational states qorient is distin-
guished from the contribution of the other states
qc, q=qcqorient,
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The integration over � yields
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where I0 is the modified Bessel function. The free
energy of the single inclusion is then obtained by
the expression F1= −kT ln q,
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3.2. Lattice gas model for inclusions embedded in
membrane continuum

To obtain the energy contribution of all the
inclusions in a membrane layer it is imagined that
the membrane layer is divided into patches. The
patches are small enough, so that the curvature
can be taken as constant over the patch, however
they contain enough molecules to be treated by
statistical mechanics. The chosen patch can then
be considered as a system with well defined princi-
pal curvatures C1 and C2, given area Ap, given
number of inclusions Np and given temperature T
and is considered to be in local thermodynamic
equilibrium.

The inclusions are treated as a two dimensional
ideal gas [13,12]. The canonical partition function
of the inclusions in a small patch of the mem-
brane layer is Q=qNp/Np! [12,13], where q is the
partition function of the inclusion and Np is the
number of the inclusions in the patch. Knowing
the canonical partition function Q, we can obtain
the free energy of the patch, Fp= −kT ln Q. The
Stirling approximation is used and the area den-
sity of the number of inclusions n=Np/Ap is
introduced. This gives for the area density of the
free energy [13].
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Fp
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= −nkT ln
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qcI0
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C� C� m
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+kT(n ln n−n) (7)

To obtain the free energy of the inclusions of
the whole membrane layer FL the contributions of
all the patches are summed, i.e. the integration
over the layer area A is performed FL=�A(Fp/
Ap) dA, where dA is the area element.

The explicit dependence of the area density n on
the position can be determined by the condition
for the free energy of all the inclusions to be at its
minimum in the thermodynamic equilibrium,
�FL=0. It is taken into account that the total
number of inclusions N in the layer is fixed,

�
A

n dA=N (8)

and that the area of the layer A is fixed. The
above isoperimetric problem is reduced to the
ordinary variational problem by constructing a
functional FL+� �A n dA=�A L(n) dA, where
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C� C� m

�n
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and � is the Lagrange multiplier. The variation is
performed by solving the Euler equation �L/�n=
0. Deriving Eq. (9) with respect to n and taking
into account Eq. (8) gives the Boltzmann distribu-
tion function modulated by the modified Bessel
function I0
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where qc is given by Eq. (3) and n̄ is defined as
n̄=N/A.

To obtain the equilibrium free energy of the
inclusions in the membrane layer the equilibrium
density (10) is inserted into the expression (7) and
integrated over the area A. Rearranging the terms
yields [13]

FL= −NkT ln
�1

A
�

A

qcI0
��+�*

2kT
C� C� m

�
dA

n
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4. Results

4.1. Theoretical predictions

To obtain the equilibrium shape of the vesicle
at given area (A) and volume (V), we should
minimize the membrane free energy consisting of
the contribution of the Canham–Helfrich bending
energy and the contribution of the C12E8 induced
membrane inclusions in the outer and in the inner
membrane bilayer leaflet (Fo and Fi, respectively),

F=
1
2

kc
�

A

(2C� −C0)2 dA+Fi+Fo (12)

where kc is the local bending modulus and C0 is
the spontaneous curvature. In this work it is
taken that C0=0. The first term in Eq. (12)
represents the local bending energy [8]. For the
sake of simplicity the non-local bending energy
[15–17,4,18] is not considered in Eq. (12). Includ-
ing the non-local bending energy would not affect
the set of possible shapes obtained by the mini-
mization procedure [4,19], since the non-local
bending energy does not depend on the details of
the shape [20,17].

The contribution of the C12E8 inclusions in the
j-th leaflet of the membrane bilayer to the mem-
brane free energy is (see Eq. (11))
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with

qcj=exp
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4kT
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2 )
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where j=o, i. The index o denotes the outer
leaflet while the index i denotes the inner leaflet of
the membrane bilayer, �i= −1 and �o=1. N is
the total number of the C12E8 inclusions in the
j-th leaflet of the vesicle membrane. For the sake
of simplicity it is taken in this work that �=�*.
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Fig. 3. Schematic figure illustrating different intrinsic shapes of the membrane inclusions characterized by the two intrinsic principal
curvatures C1m and C2m. Shading marks the hydrophilic surface of the inclusion. Three characteristic intrinsic shapes of inclusions
are shown in the figure: C1m=C2m=0 (A), C1m�0 and C2m�0 (B), C1m�0 and C2m=0 (C). The corresponding most favourable
membrane surfaces are also shown.

The integrations in Eqs. (12) and (13) are per-
formed over the entire membrane area A.

In the expression for Fj (Eq. (13)), the quanti-
ties C� m= (C1m+C2m)/2 and C� m= (C1m−C2m)/2
contain the information about the effective shape
of the inclusions. Here, C1m and C2m are the two
intrinsic principal curvatures of the inclusion (Fig.
3). The inclusions are called isotropic if C1m=C2m

[20] and anisotropic if C1m�C2m [14,12,13] (Fig.
3B and C). The in-plane rotational ordering of the
anisotropic inclusions in the curvature field of the

membrane [2] may be strongly coupled to
the lateral area density of the membrane inclu-
sions and to the shape of the membrane
[12,13,21,14].

In the following, the analysis is restricted to
axisymmetric vesicle shapes where the symmetry
axis of the vesicle coincides with the y axis, so that
the shape is given by the rotation of the function
y(x) around the y axis (Fig. 4). In this case the
principal curvatures are expressed by y(x) and its
derivatives with respect to x as follows,
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C1= −y�(1+y �2)−3/2 (15)

C2= −y �x−1(1+y �2)−1/2 (16)

where y �=dy/dx and y�=d2y/dx2.

The axisymmetric vesicle shape is parametrized
by a function of the form

y(x)=
�

�+
�mxm

1+�mxm

��	2−x2 (17)

including four free parameters (�, 	, �, m). In
seeking for the minimum of the membrane free
energy F, the constraints of fixed vesicle area,

A=4�
� 	

0

x�1+y �2 dx (18)

and volume,

V=4�
� 	

0

xy dx (19)

are taken into account.
Dimensionless quantities are introduced (see

Appendix A). In the minimization procedure, the
parameters � and 	, as functions of the parame-
ters � and m, are determined numerically from the
constraints for the vesicle volume (Eq. (19)) and
area (Eq. (18)). The remaining parameters � and
m are then determined numerically by the mini-

mization of the relative membrane free energy
f=F/8�kc (see Appendix A). The integrals in Eqs.
(A1), (18) and (19) are calculated numerically.

Fig. 4 shows the dependence of the calculated
equilibrium vesicle shape on the intrinsic principal
curvature of the membrane inclusion C1m, for
C2m=0. The relative volume is �=0.2 and the
values of the parameters are 
=1, �o=100 and
�i=0 (where �j�Nj T/kc and 
��/T, see Ap-
pendix A). The condition �i=0 means that the
inclusions are distributed only in the outer leaflet
of the membrane bilayer. To illustrate the interde-
pendence between the intrinsic effective shape of
the membrane inclusions (determined by C1m and
C2m) and the equilibrium vesicle shape (deter-
mined by C1 and C2), the area density of the
membrane inclusions nj(x) in the j-th membrane
leaflet is also calculated (see Eq. (A6)). The area
density of the inclusions in the outer layer no(x) is
shown in Fig. 4 (the value of ni (x) is zero for all
x, since �i=0). It can be seen (Fig. 4a) that the
membrane inclusions with zero intrinsic principal
curvatures (C1m=C2m=0) favour an oblate shell-
like vesicle shape. In this case the vesicle has a
large central region of small membrane local
mean curvature C� = (C1+C2)/2, where the area
density of the inclusions no(x) is nearly constant.
On the other hand the area density no(x) of
inclusions with zero intrinsic curvatures is very
small at the edge of the vesicle, where the mem-
brane local mean curvature C� is large and
positive.

The central part of the vesicle becomes increas-
ingly thinner and more plate-like while the thick-
ness of the periphery increases with increasing
C1m. At C1m= −3 (Fig. 4e), the vesicle has a thin
plate-like central region and a toroidal periphery
and resembles the observed torocytes.

On the basis of the presented results it can be
concluded that the calculated equilibrium vesicle
shape approaches the shape of the torocyte with
increasing the anisotropy of the membrane inclu-
sions that are embedded in the vesicle membrane.
The membrane inclusions with zero intrinsic cur-
vatures (C1m=C2m=0) do not favour the toro-
cyte vesicle shape (Fig. 4a).

For the isotropic conical (C1m=C2m�0) and
inverted conical (C1m=C2m�0) membrane inclu-

Fig. 4. The calculated equilibrium vesicle shape as a function
of the increasing intrinsic principal curvature C1m for C2m=0,
�=0.2, 
=1, �o=100 and �i=0. The values of C1m are: 0 (a),
−1 (b), −2 (c), −2.5 (d) and −3 (e). The corresponding
area density of the membrane inclusions in the outer leaflet
(no) is also shown (broken lines).
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Fig. 5. The calculated equilibrium vesicle shape as a function
of the increasing intrinsic principal curvature C1m for C2m=0,
�=0.2, 
=1, �o=80 and �i=20. The values of C1m are: 0 (a),
−2.5 (b) and −2.6 (c). The corresponding area densities of
the membrane inclusions in the outer (broken lines) and inner
leaflet (dotted lines) of the membrane bilayer are also shown.

4.2. Experimental results

The lateral membrane heterogeneity in terms
of co-existing lateral lipid domains with different
molecular composition and distinct physical
properties has been intensively studied in biologi-
cal membranes in the last years [22,23,9,10]. In
this work, the coexistence of the lateral lipid
domains, characterized by different order para-
meters and rotational correlation times [9,10]
was studied using the ESR technique. The ESR
experiment shows that the CmEn molecules inter-
act with the erythrocyte membrane. We antici-
pate that the hydrophobic tail of CmEn incorp-
orates into the hydrophobic portion of the mem-
brane bilayers. The experimental ESR spectra of
the control erythrocytes, as well as the spectra of
CmEn treated erythrocyte samples have been de-
composed into three domain types, where the
type I pertains to the most disordered fluid do-
main, and type III to the most ordered domain.
The population proportions of the membrane
domains, i.e. the relative weight factors are given
in Fig. 6. They have been evaluated using the
program EPR SIM 4.0 [11], by which the experi-
mental spectra have been fitted with the calcu-
lated spectra for the considering domains. The
parameters used are the optimized values of the
molecular orientation ordering and molecular
dynamics. The obtained parameters and the po-
larity corrections are shown in Table 1.

sions, the calculated stable torocyte vesicle
shapes were not found, neither for the inclusions
distributed in the outer leaflet (�o�0, �i=0) nor
for the inclusions distributed in both leaflets of
the membrane bilayer (�o�0, �i�0).

For comparison, Fig. 5 shows the dependence
of the calculated equilibrium vesicle shape on
the intrinsic principal curvature of the membrane
inclusion C1m for the case where the inclusions
are distributed in both leaflets of the membrane
bilayer, e.g. �o=80 and �i=20. The values of
the other parameters are: C2m=0, �=0.2 and

=1. It can be seen in Fig. 5 that the influence
of the intrinsic effective shape of the inclusions
on the equilibrium vesicle shape is essentially the
same as in Fig. 4. The area density of the inclu-
sions in the outer leaflet no(x) (broken lines) dif-
fers from the area density of the inclusions in
the inner leaflet ni(x) (dotted line).

Fig. 6. The lateral domain population of erythrocyte mem-
brane for the control and C12E8 treated samples. The spin
probe methyl ester of 5 dioxyl palmitate MeFASL(10,3) was
used for EPR measurement. The bars indicate the S.D., refer-
ring to five independent experiments. The parameters of do-
mains are given in Table 1.
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Table 1
Values of the parameters obtained from the simulation of the
experimental ESR spectra for the three types of domains

DomainsParameters

II IIII

0.38Order parameter S 0.730.13
Rotational correlation time 1.1 0.6 1.0

� (ns)
Additional relax. width (G) 0.7 1.3 2.7

0.990.95 0.99Polarity corrections on A
1.00015 1.0001Polarity corrections on g 1.00015

lipid molecules in the neighbourhood of C12E8

move apart sideways (local phase transition) [24–
26]. Based on the described properties of C12E8

molecules and on the C12E8-phospholipid interac-
tions [27] it has been anticipated that the effective
shape of the C12E8-phospholipid complexes (inclu-
sions) may be anisotropic (C1m�C2m) [1,2]. In
addition, it is known that C12E8 molecules may
also interact with membrane proteins and form
C12E8-protein complexes (inclusions) [28]. In gen-
eral, the effective shape of the C12E8-protein mem-
brane inclusion may also be anisotropic.
Therefore the anisotropic C12E8-induced mem-
brane inclusions may be C12E8-phospholipid com-
plexes and/or C12E8-protein complexes. However
in our calculations, the inclusions have been, for
the sake of simplicity, considered as equal.

In line with the theoretical predictions given in
this work, it was recently suggested that the C12E8

molecules might also stabilize the membrane
pores induced by the electroporation [29]. This
could be the consequence of an increased area
density of the anisotropic C12E8-induced inclu-
sions at the edge of the pore, favouring highly
anisotropic membrane shape at the pore edge.

The effect of C12E8 on the physical properties
of the erythrocyte membrane was compared to the
effect of C12E4. The C12E8 molecule can be distin-
guished from the analogous C12E4 molecule as it
has a larger hydrophilic head (Fig. 1). The spin
probe MeFASL(10,3) [9] may report about the
effects of the CmEn molecules on the lateral do-
main distribution (domains I, II and III) at the
level of the incorporated nitroxide. The used spin
probe is thought to distribute evenly between the
inner and the outer leaflet. Fig. 6 shows that
C12E4 drastically changes the proportions of the
membrane lipid domains relative to the control
membrane, while C12E8 induces much smaller
changes in the proportions of the domains. This
may be partially due to the larger hydrophilic
polyethylene head group of the C12E8 molecule
that may not be pulled so deep into the membrane
as the head group of the C12E4 molecule. There-
fore the bound C12E8 induces a different perturba-
tion at the level of the incorporated nitroxide than
C12E4. Also, specific interactions between the spin

Fig. 6 shows that the parameters of the simula-
tion of the experimental ESR spectra of the sam-
ples spin-labelled with MeFASL(10,3) changed
most strikingly upon binding of C12E4 in the
erythrocyte membrane. The effect of C12E8 is
smaller. The portion of the most fluid membrane
domain I relative to the control membrane is
increased in the samples containing C12E8 and
also in the samples containing C12E4. However, in
the case of C12E4 the increase of the membrane
fluidity is drastic.

5. Discussion

In this work the role of C12E8-induced mem-
brane inclusions in the formation and stability of
the torocyte endovesicles was studied theoreti-
cally. The equilibrium shape of the vesicle was
determined by the minimization of the membrane
free energy. A strong coupling between the calcu-
lated equilibrium vesicle shape and the lateral
distribution of C12E8-induced inclusions was ob-
served. It was shown that the calculated equi-
librium vesicle shapes are torocytic only if the
membrane inclusions embedded in the vesicle
membrane are anisotropic. In contrast, the
isotropic membrane inclusions do not favour the
torocyte vesicle shapes. A possible source of an-
isotropy of the C12E8 membrane inclusions, fa-
vouring the torocyte formation, may be the large
head group of C12E8 molecule. Another possible
reason for the anisotropy of the C12E8-induced
inclusions is that the acyl chains of the phospho-



M. Fošnarič et al. / Colloids and Surfaces B: Biointerfaces 26 (2002) 243–253252

probe and the CmEn molecules cannot be ex-
cluded. In addition, the difference between the
effects of C12E8 and C12E4 on the ESR spectra
may be related to the preferential distribution of
C12E8 and C12E4 between the two membrane
leaflets. Since C12E8 induces stomatocytic shapes
it should be predominantly accumulated in the
inner membrane leaflet, while C12E4, which does
not markedly affect erythrocyte shape, should be
rather evenly distributed between both membrane
leaflets [30,31]. A recent report [32] suggests that
C12E8 is accumulated in the inner membrane
leaflet because the oxyethylene chain binds
cations, thereby giving the molecule a positive
charge character. The positively charged C12E8-
cation complexes would then be attracted to the
negatively charged phospholipids head groups in
the inner membrane leaflet. It is also possible that
C12E8 is accumulated in the inner membrane
leaflet due to polarization interactions [33] directly
with the phospholipid head groups in the inner
leaflet or with the membrane skeleton.

The presence of CmEn molecules in both leaflets
requires that CmEn molecules can be exchanged
between the leaflets. The results from the previous
studies indicate a rapid C12E8 transport across the
cell membrane [34,35]. The transport of C12E8

from the outer to the inner leaflet of the erythro-
cyte membrane is also in accordance with the
stomatocytogenic effect of C12E8, i.e. the predom-
inant binding of C12E8 in the inner leaflet of the
erythrocyte membrane.
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Appendix A. Introduction of dimensionless
quantities

The unit of length is chosen to be the radius of
a spherical vesicle R0= (A/4�)1/2 that has the
same area A as the vesicle under consideration.

The variables and parameters are redefined as
follows: x/R0�x, y/R0�y, C1R0�C1, C2R0�
C2, C1mR0�C1m, C2mR0�C2m, C� R0�C� , C� R0�
C� , C� mR0�C� m, C� mR0�C� m, 	/R0�	, �/R0��.
The volume and the area are normalized relative
to the corresponding values of the spherical vesi-
cle with radius R0. The relative vesicle volume is
�= (36�V2/A3)1/2 and the relative vesicles area is
a=A/4�R0

2=1. The relative membrane free en-
ergy f=F/8�kc can be written in terms of normal-
ized quantities as

f=
�

a

C� 2 da−�o�o−�i�i (A1)

where j=o, i,

�j= ln
� �

a

qcj I0(�j
C� C� m) da
n

(A2)

qcj=exp
�

−



2
((�jC� −C� m)2+C� 2+C� m

2 )
n

(A3)

�j=Nj kT/8�kc (A4)


=�/R0
2kT (A5)

The expression for the area density of the mem-
brane inclusions nj(x) in the j-th membrane leaflet
is normalized as follows (see Eq. (10)):

nj(x)
n̄j

=
qcj I0(
C� C� m)�

a

qcj I0(
C� C� m) da
(A6)

where n̄j=Nj/A is the uniform area density.
It was estimated for R0�10 �m that the inter-

action constant 
 might be of the order of 10−3

[13]. In our case R0�1 �m, therefore 
 may be of
the order of 10−1 or larger. By taking into ac-
count that the area per C12E8 molecule is around
1 nm2 [36], the area of the torocyte vesicle is A�5
�m2 (Fig. 2), kT�5×10−21 J, kc�10−19 [18]
and that the C12E8 molecules occupy around 1%
of the leaflet area, we can estimate that �j�100.
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[32] H. Hägerstrand, J. Bobacka, M. Bobrowska- Häger-
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