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induce the partial lateral segregation of different membrane 
components. The entropy of mixing of membrane compo-
nents hinders the total lateral segregation of the anisotropic 
and isotropic membrane components. Self-assembled 
aggregates formed by anisotropic membrane components 
facilitate the growth of long membrane tubular protrusions. 
Protrusive force generated by actin filaments favors strong 
segregation of membrane components by diminishing the 
opposing effect of mixing entropy.

Keywords Numerical study · Biological membranes · 
Vesicles · Anisotropic membrane components · Membrane 
tubular protrusions · Actin cytoskeleton

Introduction

Biological membranes can be viewed as multicomponent 
systems (Israelachvili 2011; Baumgart et al. 2011). The 
membrane constituents themselves may generate the cur-
vature of the membrane, which, in turn, depends on the 
intrinsic shape of the constituents and their interaction with 
other membrane constituents. The basic building block of 
the cell membrane is the lipid bilayer which contains many 
different kinds of lipids, proteins and other molecules 
(Singer and Nicolson 1972; McMahon and Gallop 2005; 
Peter et al. 2004; Saarikangas et al. 2009; Gómez-Llobre-
gat et al. 2016; Simons and Sampaio 2011). Membrane 
proteins and protein-lipid complexes are examples of typi-
cal anisotropic membrane components (Iglič et al. 2007). 
In addition, lipid molecules, as the main component of bio-
logical membranes, should in general also be considered 
as anisotropic molecules (Perutková et al. 2011; Rappolt 
et al. 2008; Kulkarni 2012). Proteins and lipid molecules 

Abstract Biological membranes are composed of differ-
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and their complexes are able to freely move within the two-
dimensional membrane (Umeda et al. 1998).

The shape of the membrane at the site of a particular 
membrane constituent is described by two principal mem-
brane curvatures, while the intrinsic shape of the membrane 
constituent/nanodomain is characterized by the correspond-
ing principal curvatures of the imaginary membrane that 
would completely fit the unconstrained constituent (Iglič 
et al. 2007; Kralj-Iglič et al. 2002; Fournier 1996; Kralj-
Iglič et al. 1999). In general, the principal directions of 
these two systems may be rotated with respect to each other 
at the site of the constituent (Kralj-Iglič et al. 1999, 2002). 
If the two principal membrane curvatures at a given site are 
equal, the membrane shape is considered isotropic, while 
if they differ, it is considered anisotropic (Fournier 1996; 
Kralj-Iglič et al. 1996; Iglič et al. 2007; Kralj-Iglič et al. 
2000). Likewise, membrane constituents with intrinsically 
equal/different principal curvatures are considered iso-
tropic/anisotropic (Iglič et al. 2007; Fournier 1996; Kralj-
Iglič et al. 1999, 1996, 2002; Walani et al. 2014; Mesarec 
et al. 2016). In general, the intrinsic shapes of membrane 
constituents are anisotropic (Iglič et al. 2007; Fournier 
1996; Kralj-Iglič et al. 1996; Walani et al. 2014; Mesarec 
et al. 2016; Kralj-Iglič et al. 2006). In addition, membrane 
curvature at almost all points on the membrane surface is 
anisotropic.

Tubular protrusions of biological membranes play an 
important role in cellular processes. There have been many 
attempts to explain the growth and stability of the tubular 
membrane protrusions observed experimentally. For exam-
ple, it has been shown that minimization of the isotropic 
bending energy of the membrane, considered as an iso-
tropic two-dimensional liquid (Canham 1970; Helfrich and 
Naturforsch 1973), is not sufficient to explain the stability 
of highly curved membrane tubular protrusions (Kralj-Iglič 
et al. 2000, 2002; Iglič et al. 2007).

Based on the liquid mosaic model (Singer and Nicolson 
1972), which described the biological membrane as a two-
dimensional isotropic liquid lipid bilayer with embedded 
laterally mobile larger molecules, early physical models 
(Canham 1970; Helfrich and Naturforsch 1973) considered 
the membrane as a thin elastic shell; the shell was taken to 
have laterally isotropic properties. These models and their 
modifications successfully described the observed shapes 
of erythrocytes and phospholipid vesicles if the mem-
brane did not exhibit highly anisotropically curved regions 
(reviewed in Seifert 1997). To include also shapes with 
such regions, a model considering also deviatoric elastic-
ity was proposed on the continuum level (Fischer 1992, 
1993), introducing the spontaneous membrane warp as a 
parameter. However, the author Fischer (1992) and Fischer 
(1993) considered that its value was zero arguing that bio-
logical membranes as observed in experiments were locally 

flat. That is, the existence of membranous nanostructures 
was then not yet widely acknowledged. In 1996, a devia-
toric elasticity model (DE) was proposed, which takes into 
account the anisotropic properties of membrane compo-
nents (Kralj-Iglič et al. 1996; Fournier 1996. Deviatoric 
elasticity was derived from a single-constituent energy by 
applying methods of statistical physics (Kralj-Iglič et al. 
1996, 1999; Fournier and Galatola 1998; Kralj-Iglič et al. 
2000, 2006; Fournier 1996). The deviatoric contribution to 
the membrane free energy resulted from in-plane orienta-
tional ordering of the anisotropic constituents. Membrane 
constituents/domains in the DE model can be isotropic 
or anisotropic, which is a general approach (Hägerstrand 
et al. 2006; Baumgart et al. 2011; Helfrich 1988; Fournier 
1996; Kralj-Iglič et al. 1999, 2002; Fournier and Galatola 
1998; Walani et al. 2014; Kralj-Iglič et al. 2002), not lim-
ited by the assumption of isotropic elasticity. By applying 
this model it was shown that the deviatoric effect stabi-
lizes shapes of cells/vesicles with strongly anisotropically 
curved regions, such as shapes with thin tubular protru-
sions (Kralj-Iglič et al. 2002; Fournier and Galatola 1998; 
Fournier 1996; Iglič et al. 2006; Perutková et al. 2010; 
Kabaso et al. 2012, 2012; Bobrovska et al. 2013; Iglič 
et al. 2005, 2015) and narrow necks (Kralj-Iglič et al. 1999, 
2006; Kralj-Iglic 2012; Iglič et al. 2007, 2007).

Tubular membrane protrusions could also be a conse-
quence of external force acting on the membrane. External 
force to the membrane surface can be generated experimen-
tally by the cantilever of an atomic force microscope (Boul-
bitch 1998). In other experiments, vesicles are aspirated 
into a micropipette and a tether is pulled out of the sur-
face by gravitational forces on small glass beads that have 
adhered to the vesicle surface (Bo and Waugh 1989). The 
force on the tether can be generated also by an electromag-
net acting on a paramagnetic bead attached to the vesicle 
surface (Heinrich and Waugh 1996). In such experiments, 
the membrane of a phospholipid vesicle is point-attached 
on one side to the tip of a glass micropipette and on the 
other side to a paramagnetic bead (Heinrich et al. 1999). 
By application of hydrodynamic flow, lipidic tethers can be 
generated from the membranes of giant unilamellar vesicles 
(Borghi et al. 2003). By measuring the tether (tube) force, 
it is also possible to determine the bending rigidity and the 
lateral membrane tension of vesicles (Cuvelier et al. 2005).

Cell membrane can also be deformed in small regions 
when subjected to a localized force or torque caused by an 
integral protein (Fošnarič and Iglič 2006), a receptor or a 
cell-kicking instrument (Boulbitch 1998). In some experi-
ments with liposomes, actin polymerization, which leads 
to the growth of elongated actin filaments beneath the 
membrane, is the origin of the protrusive force (Miyata 
et al. 1999; Häckl et al. 1998). The elongating actin fil-
aments “push out” the cell/vesicle membrane in the 
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direction normal to the membrane surface (Miyata et al. 
1999; Boulbitch 1998), which may result in membrane 
tubulation (Gov and Gopinathan 2006; Veksler and Gov 
2007). However, it is still not fully understood whether 
membrane protrusions reply on the force of polymerizing 
actin filaments inside the cell, or if they membrane pro-
trusions are just stabilized by actin filaments (Yang et al. 
2009).

Liposome shapes with tubular protrusions, i.e., the 
so-called φ shapes, were observed also in experiments 
with tubulin inside the liposomes, as the consequence 
of tubulin self-assembly into rod-like structures (micro-
tubules) (Downing and Nogales 1998; Wade and Hyman 
1997) inside the vesicles (Emsellem et al. 1998; Elbaum 
et al. 1996; Fygenson et al. 1997). The polymerization 
of microtubules confined within the vesicles can lead 
to quasistatic deformation of lipid vesicles (Fygenson 
et al. 1997). As the microtubule inside the vesicle grows 
longer, a pair of long, narrow membrane sleeves appears, 
sheathing the microtubule ends, which results in the for-
mation of φ shape (Fygenson et al. 1997), observed also 
in cellular systems (Iglič et al. 2006, 2001). The growth 
of encapsulated microtubules inside the vesicles can 
deform vesicles also into other morphologies such as 
ovals, cherries, dumbbells, lemons and pearls (Emsellem 
et al. 1998).

Some experimental and theoretical studies suggest that 
the membrane tubular protrusions can be stable without 
actin filaments (Kralj-Iglič et al. 2000, 2002; Iglič et al. 
2007; Kabaso et al. 2012). It has been suggested that 
actin filaments are not necessary for the generation of the 
membrane protrusions, but only for the stabilization of 
the protrusion, which could be induced by self-assembly 
of anisotropic membrane components, for example BAR 
protein domains (Noguchi 2016; Yang et al. 2009; Frost 
et al. 2009; Simunovic et al. 2015; Scita et al. 2008). 
The BAR domain superfamily consists of BAR/N-BAR, 
F-BAR and I-BAR domains, each enforcing a differ-
ent local curvature on the membrane surface (Suetsugu 
2010). The interaction between proteins and membranes 
can result in shape deformations and topology changes 
of cell/vesicle membranes, which are important for many 
biological processes, such as cell signaling, cell division, 
and protein trafficking (Ayton and Voth 2010; Davtyan 
et al. 2016). This effect is known as protein-mediated 
membrane remodeling (Ayton and Voth 2010; Davtyan 
et al. 2016). BAR domain-induced membrane remod-
eling can result in liposome tubulation and vesiculation 
(Ayton et al. 2009; Ahmed et al. 2010; Zimmerberg and 
McLaughlin 2004).

It has been found that the actin cytoskeleton may be 
necessary for a long-term stabilization of membrane 
tubular protrusions (Yang et al. 2009). The cytoskeleton 

is in general a network of protein filaments spanning the 
cytoplasm (Umeda et al. 1998). It has been shown that a 
lipid bilayer can drive the emergence of bundled actin fil-
ament protrusions from branched actin filament networks, 
which indicates an active participation of the membrane 
in organizing the actin filaments (Liu et al. 2008).

The coupling of actin and curved proteins can also 
induce instabilities, such as pearling (Jelerčič 2015; Shlo-
movitz 2008). It has been shown that curved proteins that 
recruit actin polymerization can destabilize the mem-
brane tube; either due to fast squeeze (leading to pearl-
ing) of a uniform actin for coat (Jelerčič 2015), or due to 
the inward force forming denser protein rings that shrink 
the tube (Shlomovitz 2008). The pearling instability is 
important because it can initiate fission of the membrane 
tube into vesicles. The actin polymerization may also 
provide the additional constrictive force needed for the 
robust instability of the membrane tubes (Jelerčič 2015).

In this paper, we were mainly interested in the influ-
ence of actin filaments on the calculated vesicle shapes. 
Actin filaments are far less rigid structures than micro-
tubules (Isambert et al. 1995; Venier et al. 1994), which 
may imply that actin filaments play more of a support-
ing role, rather than being active elements generating the 
growth of membrane tubular protrusions (Miyata et al. 
1999). We applied the deviatoric elasticity (DE) model to 
study the role of anisotropic membrane domains in the 
formation and stability of the membrane tubular protru-
sions. We also studied the effect of the external force on 
the calculated vesicle shapes, which could be, among oth-
ers, a consequence of elongating actin filaments inside of 
the vesicle. Within the DE model, we explained the sta-
bility of experimentally observed membrane tubular pro-
trusions even without the application of external force, if 
the role of anisotropic membrane components was taken 
into account. We pointed out the role of local actin force 
in the process of lateral segregation of membrane constit-
uents with different intrinsic curvatures (shapes).

The structure of the paper is as follows. In Sect. 2, we 
describe the theoretical models of vesicle shape used in 
this work. In Sects. 2.1 and 2.2, we briefly describe the 
numerical procedures used to calculate closed vesicle 
shapes with minimal membrane free energy. In Sect. 3, 
we present and discuss the results of our study. We com-
pare the vesicle shapes, calculated within the DE model, 
with and without taking into account the entropy of mix-
ing. The influence of the application of the local force of 
actin filaments on the shape and stability of vesicle pro-
trusion was also considered. For comparison, we also 
show the shape of a non-axisymmetric vesicle, calculated 
by Monte Carlo simulations within the model of isotropic 
membrane elasticity. Finally, we summarize the main 
conclusions of our study in Sect. 4.



708 Eur Biophys J (2017) 46:705–718

1 3

Model and methods

We consider a membrane composed of two different com-
ponents A and B, which are characterized by the intrinsic 
principal curvatures Ci

1m and Ci
2m, where i = A,B . The 

bending energy of a membrane in the DE model may 
be written as Iglič et al. (2005), Fošnarič (2008) and 
Bobrovska et al. (2013):

where dS is an infinitesimal element of the vesicle area 
S and φ is the local relative area density of the compo-
nent A. The local relative area density of the component 
B is therefore (1− φ). H = (C1 + C2)/2 is the mem-
brane mean curvature and D = |C1 − C2|/2 is the mem-
brane curvature deviator (Kralj-Iglič et al. 2000; Fischer 
1992, 1993; Kralj-Iglič et al. 1996, 1999; Fournier 1996; 
Walani et al. 2014), where C1 and C2 stand for the mem-
brane principal curvatures. We assume that the bending 
rigidity κ(φ), the intrinsic mean curvature Hm(φ) and the 
curvature deviator Dm(φ) depend linearly on the local rel-
ative area density of the component A (φ):

where κ i is the bending rigidity of the component i, 
Hi
m = (Ci

1m + Ci
2m)/2 is the intrinsic mean curvature of 

the component i and Di
m = |Ci

1m − Ci
2m|/2 is the intrin-

sic curvature deviator of the component i, where i = A,B . 
Membrane constituent i is considered isotropic when its 
intrinsic deviatoric curvature Di

m = 0 (Ci
1m = Ci

2m). Note 
that Eq. (1) assumes that the principal system of the 
actual local membrane curvature tensor and the intrinsic 
membrane curvature tensor coincide everywhere on the 
surface of the vesicle (Iglič et al. 2005), i.e., the aniso-
tropic membrane components are perfectly oriented.

The second part of the membrane free energy is asso-
ciated with the entropy of mixing (Hägerstrand et al. 
2006; Fošnarič 2008; Bobrovska et al. 2013):

where kB is the Boltzmann constant, T is the absolute 
temperature and a0 is the area of a single nanodomain. 
The free energy functional is the sum of energy contribu-
tions defined by Eqs. (1) and (5):

(1)Fb =

∫

S

κ(φ)

[

(H − Hm(φ))
2 + (D− Dm(φ))

2
]

dS,

(2)κ(φ) = (κA − κB)φ + κB,

(3)Hm(φ) = (HA
m − H

B
m)φ + H

B
m,

(4)Dm(φ) = (DA
m − D

B
m)φ + D

B
m,

(5)Fmix =
kBT

a0

∫

S

[φ ln φ + (1− φ) ln (1− φ)]dS,

(6)F = Fb + Fmix.

Numerical minimization

In this work, we first considered axisymmetric vesicle 
shapes with the rotational symmetry about the z-axis. To 
describe the surface of the axisymmetric vesicle, we need to 
define a vesicle profile curve in the r − z plane (Fig. 1). The 
vesicle surface is constructed by the rotation of the profile 
curve around the z-axis by the angle ϕ = 2π . The vesicle 
profile curve is parameterized with the angle between the 
line tangent to the profile curve and the plane that is per-
pendicular to the axis of rotation z, θ(s), where s stands for 
the arc length of the profile curve (Góźdź 2004) (Fig. 1). 
If the function θ(s) is known, the radius r(s) and the height 
z(s) of the shape profile are calculated according to:

The function describing the shape contour θ(s) (see 
Fig. 1) is approximated by Fourier series (Góźdź 2005),

where Ls is the length of the shape profile (Fig. 1), N 
is the number of Fourier modes and ai are the Fourier 
amplitudes. For the axisymmetric closed vesicle shape, 

(7)r(s) =

∫

s

0

cos(θ(s′)) ds′,

(8)z(s) =

∫

s

0

sin(θ(s′)) ds′.

(9)θ(s) = θ0
s

Ls
+

N
∑

i=1

ai sin

(

π

Ls
i · s

)

,

Fig. 1  The vesicle profile in r − z plane, where r(s) is the radius and 
z(s) the height of the shape profile at the given arc length s. r(s) and 
z(s) are calculated with the aid of θ(s) from Eqs. (7) and (8). Ls is the 
length of the shape profile and ϕ is the angle of rotation around the 
z-axis
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we apply the following boundary conditions: θ(0) = 0 , 
θ(Ls) = π, r(0) = r(Ls) = 0, which guarantee that the 
profile is smooth and the vesicle is closed. θ0 is the angle 
at the north pole of the vesicle (Fig. 1), θ0 = θ(Ls) = π . 
In analogy to the area density profile for laterally sepa-
rated mixtures, we postulate that the local relative area 
density of the component A has the form:

where the vesicle surface is divided into two regions, 
which are characterized by the maximal and the minimal 
possible local area densities of the component A, φA

2  and 
φA
1 , respectively. The parameters ξ and s0 determine the 

width and the position of the boundary between those 
regions (Góźdź 2006; Góźdź et al. 2012; Bobrovska et al. 
2013). The constraint on the average relative area density 
of the component A φave is calculated as the following 
integral over the surface of the vesicle:

where S is the surface area of the vesicle. The remaining 
surface area of the vesicle (not covered by the component 
A) is completely covered by the component B.

The study also explores the impact of external force on 
the vesicle shapes. Such a force may be generated experi-
mentally by a cantilever of an atomic force microscope 
(Boulbitch 1998), or it may be a consequence of growing 
actin cytoskeleton inside of cells/vesicles (Miyata et al. 
1999). In our study, actin cytoskeleton is modeled as a thin 
rod-like structure, which stretches the vesicle (see Fig. 2). 
In the model, the vesicle vertical height h is always longer 
than or equal to the cytoskeleton length d (see Fig. 2). In 
the minimization procedure, we add a constraint of minimal 
vertical distance between the poles of the vesicle z(Ls) ≥ d, 
where d is the minimal vertical distance equal to the length 
of actin rod-like structure inside the vesicle (Góźdź 2004; 
Góźdź et al. 2012) (Fig. 2).

With the aid of Eqs. (9) and (10), the minimization 
of the free energy functional (Eq. 6) is replaced by the 
minimization of a function with many variables. In our 
case, these variables are the Fourier amplitudes ai, the 
shape profile length Ls, and the parameters ξ, s0, φA

2 , φA
1  . 

The principal curvatures C1 and C2, for axisymmetric 
shapes, are given as dθ(s)

ds
 and sin(θ(s))

r(s)
, respectively. Dur-

ing the minimization procedure, the vesicle surface area 
S and the volume V are kept constant in order to set a 
fixed value of the vesicle reduced volume v. The reduced 
volume v is defined as the ratio of the vesicle volume to 
the volume of the sphere with the same surface area as a 
given vesicle.

(10)φ(s) =

(

φA
2 − φA

1

)

[− tanh (ξ(s− s0))+ 1]/2+ φA
1 ,

(11)φave =

∫ 2π

0

dϕ

∫

Ls

0

φ(s)r(s)ds /S,

The equilibrium vesicle shapes are obtained by numeri-
cal minimization of the membrane energy F (Eq. 6) for 
fixed values of the reduced volume v, the average relative 
area density of the component A φave, and the minimal ver-
tical distance between the poles of the vesicle d. Note that 
the direct interactions between membrane components are 
not considered within the numerical minimization proce-
dure. The direct interactions between nearest neighboring 
membrane components could be taken into account in the 
most simple way within the Bragg-Williams approxima-
tion (Hill 1986; Hägerstrand et al. 2006; Veksler and Gov 
2007; Kabaso et al. 2012; Iglič et al. 2015) by considering 
an additional energy term proportional to φ2.

As a result of the described minimization procedure, 
we obtain the functions θ(s) and φ(s), which describe the 
shape of the vesicle and the relative area density distri-
bution of the membrane components A and consequently 
also the components B. We visualize the relative local 
area densities of the components A and B with a color 
code. All lengths in the model are scaled with respect to 
R, which is the radius of the sphere with the same surface 
area as the surface of the investigated vesicle.

Fig. 2  Schematic presentation of the actin rod-like structure inside 
the axisymmetric vesicle. The length of the actin rod is denoted by d, 
and the vertical height of the vesicle by h. a Represents the case with-
out an external local force of actin, where the actin rod-like structure 
inside the vesicle is shorter than the vesicle height. b Represents the 
axisymmetric vesicle, which is stretched due to the local force of the 
elongated actin rod
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Monte Carlo method

For comparison, we also performed Monte-Carlo (MC) 
simulations to simulate the non-axisymmetric vesicle 
shapes in thermodynamical equilibrium.

To this end, the membrane of the vesicle is simulated by 
the set of 3127 vertices linked with bonds of flexible length 
to form a closed, randomly triangulated, self-avoiding net-
work (Gompper and Kroll 1996, 2004; Ramakrishnan et al. 
2011; Penič et al. 2015). The bond lengths are allowed to 
vary between their minimal value dmin and maximal value 
1.7 dmin. All vertices experience a hard-core repulsive 
potential at their mutual distances dmin.

All membrane components are isotropic, DA
m = DB

m = 0 . 
Among them 80% of membrane components have zero 
intrinsic curvature (HA

m = 0) and the remaining 20% have 
intrinsic mean curvature HB

m = 1/dmin. The bending rigid-
ity κA = κB = 30 kBT . With the MC simulation approach 
we also consider direct interactions between components 
B. If the two vertices representing components B are near-
est neighbors, an addition energy term −αkBT  accounts for 
their bond. For reasons of simplicity we selected α = 1.

Note that besides the confined bond lengths and the 
hard-core repulsive potential between vertices of the net-
work, there are no additional constraints on the shape of the 
vesicle. A randomly triangulated network allows bond-flips 
(Gompper and Kroll 2004), accounting for the in-plane 
mobility of the components (fluid membrane). The sys-
tem is initially thermalized and then observed in thermal 
equilibrium.

Results and discussion

We studied the influence of the reduced volume, actin 
filament local force and the anisotropy of the membrane 
components on the calculated shapes of the vesicles. The 
vesicle shapes were calculated numerically as described in 
Sect. 2.1. The influence of the entropy of mixing of mem-
brane components [Eq. (5)] on the calculated vesicle shapes 
was thoroughly investigated. The degree of lateral compo-
nent separation of thje membrane components in vesicles 
with tubular protrusions was studied for different values of 
the model parameters. Finally, vesicle shapes with highly 
curved isotropic membrane inclusions were calculated for 
comparison, also for non-axisymmetric vesicle shapes, 
using MC simulations.

In the present theoretical study, the membrane contains 
isotropic and anisotropic components. Examples of pos-
sible isotropic and anisotropic membrane components 
are schematically shown in Fig. 3. Locally the membrane 
bending energy Fb [Eq. (1)] is minimal if the membrane 
components perfectly fit into the membrane. For example, 

the isotropic components with intrinsic principal curvatures 
CB
1m and CB

2m (left side in Fig. 3) have the lowest energy, 
when they are part of the spherical membrane surface with 
principal curvatures C1 = CB

1m and C2 = CB
2m. On the other 

hand, anisotropic cylindrical components (right side in 
Fig. 3) have a preference for membrane regions of cylindri-
cal shape and therefore, tend to induce membrane tubular 
protrusions (Fig. 4).

Figure 4 shows the axisymmetric vesicle shapes cal-
culated for different values of the reduced volume v. The 
average relative area density of anisotropic components A 
was set to φave = 0.15. The remaining surface area of the 
vesicle is covered by isotropic components B. The entropy 
of mixing of different membrane constituents was not taken 
into account in Fig. 4. For v = 1, the vesicle, according 
to the definition of the reduced volume, can only have a 
spherical shape. Spherical membranes have the same prin-
cipal curvatures C1 and C2 everywhere on their surface, 
therefore, the isotropic and anisotropic components are 
homogeneously mixed over the whole surface. As the value 
of the reduced volume gets smaller, different membrane 
components start to assemble into separate regions. The 
anisotropic components try to form tubular protrusions (see 
Fig. 4). The lateral segregation of two membrane compo-
nents A and B is most prominent at v = 0.90 (Fig. 4). The 
predicted lateral segregation of membrane components is 
not complete, however. Almost all anisotropic components 

Fig. 3  Schematic presentation of isotropic spherical (left) and ani-
sotropic cylindrical (right) membrane component. Principal radii 
Ri
1m and Ri

2m are linked to the principal curvatures: Ci
1m = 1/Ri

1m,  
Ci
2m = 1/Ri

2m, where i = A,B. For isotropic spherical compo-
nent, both principal curvatures are equal and different than zero: 
CB
1m = CB

2m �= 0, while for anisotropic cylindrical: CA
1m �= 0, CA

2m = 0
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are accumulated in the tubular protrusion (red color), 
while most of the isotropic components reside outside this 
region, i.e., in the spherical part of the vesicle (dark blue 
color). For values of the reduced volume smaller than 
0.90 (v < 0.90), the components A and B undergo greater 
mixing. As the radius of the tubular protrusion is increas-
ing with decreasing v, the local relative area density of 
isotropic components in the protruding membrane region 
increases, because the curvature of the protrusion becomes 
less anisotropic, i.e., less energetically favorable for aniso-
tropic component A and more favorable for isotropic com-
ponent B. At v = 0.45, the isotropic and anisotropic compo-
nents are almost homogeneously distributed over the whole 
membrane area again.

Next, we investigated the effect of an external pulling 
or pushing force on the calculated axisymmetric shapes of 
vesicles at the fixed value of the reduced volume v = 0.78 
(Fig. 5). Such force could be applied experimentally (Boul-
bitch 1998) or it may be a consequence of a growing actin 
cytoskeleton inside of the cell (Miyata et al. 1999). The 

average relative area density of anisotropic components 
A was again set to φave = 0.15 and the entropy of mixing 
was again not taken into account. The actin cytoskeleton is 
modeled as a single actin rod-like structure (Fig. 5), which 
is stretching the membrane of the vesicle (see also Fig. 2). 
Figure 5 shows the vesicle shapes calculated for different 
lengths of the actin rod-like structure inside the vesicle. 
The calculated shape of the vesicle on the left side in Fig. 5 
is not influenced by the actin force because the length of 
the actin rod-like structure inside the vesicle is shorter than 
the height of the vesicle. The other three calculated shapes 
in Fig. 5 are influenced by the actin rod-like structure, 
which is in these cases long enough to stretch the vesicles. 
As the actin rod-like structure grows, the tubular protrusion 
gets thinner and longer (Fig. 5). The formation of a thin-
ner and longer tubular protrusion are the only way for the 
vesicle to stretch and at the same time to keep the value 
of the reduced volume constant. Thinner tubular protrusion 
is energetically favorable for highly anisotropic membrane 
components, but not favorable for isotropic components. 

Fig. 4  Vesicle shapes without inner cytoskeleton element calculated 
for different values of the reduced volume v. Shapes were calculated 
within the deviatoric elasticity model of the membrane for the fol-

lowing values of model parameters: φave = 0.15, HB
m = 1, DB

m = 0, 
HA
m = 8, DA

m = 8, κA = 8 κB and κB = 30 kBT . The entropy of mix-
ing of different membrane components was not taken into account

Fig. 5  Vesicle shapes calculated for different lengths of the actin rod-
like structure (indicated with the grey lines inside the vesicles) inside 
the vesicle, where d is the length of the actin rod and h is the height 
of the vesicle. Shapes were calculated within the deviatoric elasticity 

model for the following values of parameters: v = 0.78, φave = 0.15, 
HB
m = 1, DB

m = 0, HA
m = 8, DA

m = 8, κA = 8 κB and κB = 30 kBT . The 
entropy of mixing of different membrane components was not taken 
into account
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This is why we predicted that the local relative area den-
sity of anisotropic components in the tubular protrusion 
increases as the protrusion gets thinner. The vesicle shape 
on the right hand side of Fig. 5 (d = h = 6.8) has nearly 
the largest possible height at a given value of v. The vesi-
cle can not be stretched much further at a given value of 
v, without significant increase of membrane energy (which 
would destabilize the shape) as it is already very close to 
the limit shape composed of a spherical main body and 
cylindrical protrusion (Mesarec et al. 2016; Perutková et al. 
2010; Iglič and Kralj-Iglič 1999).

In the following figure (Fig. 6), we present the effect 
of the entropy of mixing of membrane components on the 
calculated closed membrane shapes. Again, the vesicle 
shapes were calculated for different values of v, with the 
average relative area density of anisotropic components A 
set to φave = 0.15. The relative importance of the entropy 
contribution is determined by the area of a single nano-
domain a0 and the parameter R, which is defined as the 
radius of the sphere with the same surface area as the sur-
face of the investigated vesicle [see Eq. (5)]. In Figs. 4 
and 6, tubular protrusions occur at similar values of v. 
For the calculated shapes with high (v > 0.96) and rela-
tively low (v < 0.60) values of the reduced volume, the 
isotropic and anisotropic components are almost homo-
geneously distributed over the whole surface (Fig. 6). 
It should be noted that these shapes (for v > 0.96 and 
v < 0.60) are not strongly influenced by the entropy 
of mixing (see Figs. 4, 6). For the other values of the 
reduced volume (0.60 ≤ v < 0.96), we observe a lateral 
segregation of membrane components and the formation 
of tubular protrusions. The predicted curvature driven 
lateral segregation of the isotropic and anisotropic com-
ponents is less prominent if the mixing entropy is taken 
into account (see Figs. 4, 6). The entropy contribution 
to the free energy functional Fmix [Eq. (5)] enforces dif-
ferent kinds of membrane components to intermix more 
strongly with each other, for which reason we do not 

predict shapes with a high degree of the membrane com-
ponent lateral separation in Fig. 6. Vesicles, calculated 
with the entropy of mixing taken into account, also have 
wider tubular protrusions, because of the relatively high 
local relative area density of isotropic components in the 
region of a tubular protrusion.

In Fig. 7, we studied the influence of application of 
actin force on the calculated vesicle shapes with and 
without the entropy of mixing. Shapes were determined 
for reduced volume v = 0.90 and the average relative 
area density of anisotropic components φave = 0.15. The 

Fig. 6  Vesicle shapes calcu-
lated for different values of 
the reduced volume v, where 
the entropy of mixing is taken 
into account in minimization 
of the membrane free energy. 
Shapes were calculated within 
the deviatoric elasticity model 
for the following values of 
model parameters: φave = 0.15, 
HB
m = 1, DB

m = 0,  
HA
m = 8, DA

m = 8, κA = 8 κB, 
κB = 30 kBT , R = 250 nm and 
a0 = 100 nm2

Fig. 7  Vesicle shapes calculated for different lengths of the actin rod-
like structure inside the vesicle, where d is the cytoskeleton length 
and h is the height of the vesicle. The entropy of mixing of different 
membrane components was taken into account for the vesicles in the 
second row only, but not also for the vesicles in the first row. Shapes 
were calculated within the deviatoric elasticity model for the fol-
lowing values of model parameters: v = 0.90, φave = 0.15, HB

m = 1,  
DB
m = 0, HA

m = 8, DA
m = 8, κA = 8 κB, κB = 30 kBT , R = 250 nm 

and a0 = 100 nm2
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vesicles in the first row in Fig. 7 were calculated with-
out considering the entropy of mixing, while for the 
shapes in the second row, the entropy of mixing of dif-
ferent membrane components was taken into account in 
minimization of the membrane free energy. The vesicle 
shapes on the left side in both rows in Fig. 7 represent 
the vesicles with an inner actin rod-like structure which 
is shorter than the height of the vesicle (d < h). These 
two vesicles are therefore not stretched by actin force. 
The noticeable difference between the calculated shapes 
of the vesicles for d < h in both rows in Fig. 7 is due to 
the effect of mixing entropy. Without the influence of 
mixing entropy, the predicted lateral segregation of the 
membrane components A and B is very prominent, even 
without the application of actin force (see the shapes in 
the upper row in Fig. 7). The anisotropic components are 
nearly completely located in the protrusion (red color), 
while the isotropic components reside in the spheri-
cal part of the vesicle (dark blue color). The membrane 
of the vesicles in the first row in Fig. 7 is not stretched 
substantially when actin force is applied because the pre-
dicted vesicle shapes would be quite similar, i.e., close to 
the limit shape with a spherical bottom and a cylindrical 
protrusion.

Figure 7 shows that for v = 0.90, the membrane con-
stituents of both kinds can not laterally segregate strongly 
enough to form a tubular membrane protrusion without 
the application of actin force if the influence of entropy 
of mixing is taken into account (see the first shape in the 
second row in Fig. 7, where d < h). The entropy of mixing 
enforces the anisotropic and isotropic membrane constitu-
ents to intermix. In the second row in Fig. 7 we therefore 
analyze the effect of the actin pushing force on the vesicle 
shapes if the entropy of mixing is taken into account. As 
the inner rod-like actin structure grows longer, the isotropic 
and anisotropic membrane components laterally segregate 
more strongly and the formation of a tubular protrusion is 
facilitated. To conclude, even when for higher values of 
vesicle relative volumes the mixing entropy is taken into 
account, the equilibrium vesicle shapes with a high degree 
of the membrane component lateral segregation are pos-
sible if actin force is applied. For longer actin rods, the 
calculated vesicle shapes with the mixing entropy of mem-
brane components taken into account become very similar 
to those shapes calculated without considering the entropy 
of mixing (Fig. 7). For longer actin rod-like structures, 
the vesicle tubular protrusion gets thinner and elongated, 
because this is the only energetically favorable way for the 
vesicle to stretch and to keep the value of the reduced vol-
ume v constant at the same time.

Thin tubular membrane protrusions, generated by elon-
gated actin rods, are energetically favorable also due to 
accumulation of anisotropic membrane components in the 

protrusion. Namely, when the tubular protrusion gets thin 
enough, the anisotropic components strongly accumulate in 
the protrusion, which leads to nearly complete lateral sepa-
ration of the isotropic and anisotropic membrane constitu-
ents. The described effect can in some cases prevail over 
the entropy effect. A similar but not identical phenomenon 
was observed in Veksler and Gov (2007). When there is 
no interaction between membrane components and when 
the relative cell volume is high, the intrinsic curvature of 
isotropic components alone is not strong enough to offset 
the entropy of mixing Veksler and Gov (2007). Only with 
the addition of an actin cytoskeleton force, it is possible 
to explain strong segregation of isotropic membrane com-
ponents when the entropy of mixing is taken into account 
(Veksler and Gov 2007). On the contrary, in the case of 
anisotropic membrane components, the intrinsic curvature 
alone can be strong enough to offset the entropy of mix-
ing, but only for some values of the vesicle reduced vol-
ume, corresponding to wider tubular protrusions as shown 
in Fig. 6. To predict thinner tubular protrusions, application 
of actin force is needed (Fig. 7) or the anisotropy should be 
stronger (Kralj-Iglič et al. 2002, 2005).

Note that the complexity of the problems addressed in 
this article can be further increased if the higher degree 
of freedom of the membrane in-plane order is taken into 
account (MacKintosh and Lubensky 1991; Kralj-Iglič et al. 
2000, 2006; Jesenek et al. 2013), which is often realized 
in biological membranes. Orientational ordering of aniso-
tropic membrane constituents can be considered also within 
the deviatoric elasticity model, which is used in this paper. 
Nevertheless, Eq. (1) represents a simplified case, where 
it is assumed that anisotropic membrane components are 
always oriented in the energetically most favorable way.

In-plane ordering and deformation in the membranes 
due to the tilt of lipid tails was first considered by Helfrich, 
Lubensky and Prost (Helfrich 1988; Lubensky and Prost 
1992). In biological membranes, the tails of lipid molecules 
may tilt relative to the surface normal and develop hexatic 
orientational ordering (Smith et al. 1988). Tilted bilay-
ers tend to have both tilt and hexatic order (Smith et al. 
1988). Lipid tilt deformation and lipid tilt degree of free-
dom play an important role in the local lipid deformation 
around the membrane embedded anisotropic and isotropic 
proteins which can locally soften a lipid bilayer membrane 
(Fošnarič and Iglič 2006) and can also determine the char-
acter of the depletion forces between membrane embed-
ded proteins (Bohinc et al. 2003). The isotropic and ani-
sotropic bending moduli of the membrane with isotropic 
and anisotropic membrane embedded inclusions may 
strongly depend on lipid tilt, splay and compression elastic 
moduli (Bohinc et al. 2003). The lipid tilt deformation is 
also closely related to the observed hexatic order/phases in 
lipid bilayers, with long range bond orientation order and 
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short-range positional order (Bernchou et al. 2009). Hex-
atic tilt order may persist in lipid bilayers and can possibly 
rationalize the textures observed in gel domains (Bernchou 
et al. 2009). The in-plane orientational ordering in hexatic 
membranes has been also experimentally observed (Bern-
chou et al. 2009), proving the concept of anisotropic mem-
brane elasticity and orientational ordering of membrane 
components, utilized in the present work.

Some classes of membrane inclusions, for example, anti-
microbial peptides and BAR protein domains, could also 
exhibit in-plane ordering (Zimmerberg and Kozlov 2006). 
The anisotropic banana-shaped BAR protein domains may, 
due to their in-plane (nematic) ordering (Gómez-Llobregat 
et al. 2016), stabilize thin membrane protrusions (Frost 
et al. 2009; Simunovic et al. 2015; Mesarec et al. 2016). A 
possible origin of anisotropy of other membrane mechani-
cal properties besides the anisotropic bending properties, 
like the anisotropy of the membrane area stretching modu-
lus, may be membrane attached protein scaffolds with ori-
ented fibers or clusters of oriented membrane attached ani-
sotropic proteins, such as BAR domain proteins (Mesarec 
et al. 2016; Walani et al. 2014).

Coupling between the in-plane orientational ordering 
and the membrane local curvature may lead to the forma-
tion of experimentally observed nanotubular membrane 
protrusions (Kralj-Iglič et al. 2000, 2002) which cannot be 
theoretically explained within the Helfrich-Canham iso-
tropic membrane bending model (Helfrich and Naturforsch 
1973; Canham 1970; Seifert 1997), but only within the 
model of anisotropic membrane elasticity (Fischer 1992; 
Kralj-Iglič et al. 1996; Fournier 1996; Kralj-Iglič et al. 
1999; Fournier and Galatola 1998; Walani et al. 2014), uti-
lized also in the present work. Accordingly, Fig. 8 shows 
the non-axisymmetric vesicle shape without inner actin 
cytoskeleton, calculated by MC simulations for the mem-
brane composed of two isotropic constituents, where one 
component has high intrinsic curvature (red color). It can 
be observed that the MC predicted vesicle shape has only 
undulating (necklace-like) membrane protrusions and no 
tubular protrusions.

Moreover, it was experimentally proved (Kralj-Iglič 
et al. 2000, 2005) that in red blood cells, the tubular bud-
ding of the membrane can be induced only by anisotropic 
dimeric amphiphiles intercalated in the red blood cell mem-
brane, but not by isotropic monomeric amphiphiles which 
can induce only spherical budding of the membrane. These 
experimental results strongly support the theoretical results 
presented in this work, showing that without the actin force 
only anisotropic membrane components may facilitate the 
formation of tubular membrane protrusions. The compari-
son of theoretical and experimental results (Perutková et al. 
2009, 2011; Rappolt et al. 2008) indicates that the con-
cept of the anisotropic shape of lipid molecules and their 

in-plane ordering may also better explain the phase tran-
sition between the fluid lamellar phase Lα and the inverse 
hexagonal phase HII. In addition, the deviatoric bending of 
anisotropic lipid molecules may explain the stability of the 
inverse hexagonal phase HII at higher temperatures (Perut-
ková et al. 2009). A similar idea was also expressed ear-
lier in Templer (1998), but was not applied to any model 
calculations.

In membranes possessing orientational ordering, topo-
logical defects (TDs) may be formed. TDs are a source of 
relatively large local elastic penalties. Consequently, they 
could affect the local membrane shape or even trigger sig-
nificant biological processes, such as cell fission Jesenek 
et al. (2013). It has been established that curvature-induc-
ing membrane-nematogens can aggregate spontaneously 
and change the local shape of the membrane even at low 
concentrations (Ramakrishnan et al. 2013). The coupling 
between in-plane nematic order and local curvature on 
a deformable membrane surface can lead to generation 
of point defects and line singularities, in turn leading to 
the production of membrane tubes and branches (Ram-
akrishnan et al. 2010, 2012).

Conclusions

We performed a numerical study on the impact of different 
intrinsic curvatures of membrane constituents on the shapes 

Fig. 8  Non-axisymmetric vesicle shape calculated by MC simula-
tions for the membrane composed of two isotropic constituents. One 
component has very high intrinsic curvature (marked in red color), 
while the other component has zero intrinsic curvature (marked in 
blue color). The membrane component with high intrinsic curvature 
is accumulated in the membrane protrusions
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of closed vesicles. We focused mainly on the role of the 
external force of the cytoskeleton in the formation of mem-
brane tubular protrusions. In cellular systems, such forces 
may be a consequence of elongating actin filaments. In our 
theoretical analysis we took into account also the effect of 
the anisotropic membrane constituents on the formation of 
membrane tubular protrusions. It was shown that in some 
cases, external force can induce strong lateral segregation 
of membrane constituents of different intrinsic curvatures 
and the concomitant formation of membrane tubular pro-
trusions. The force of actin filaments may stabilize mem-
brane tubular protrusions whose growth is driven by the 
combined effect of local accumulation of anisotropic mem-
brane constituents and the force originating from the actin 
cytoskeleton.

The change of the cell/vesicle reduced volume influ-
ences the lateral distribution of anisotropic membrane com-
ponents and the width and length of tubular protrusions. 
We ascertained that for high and low values of the reduced 
volume, the isotropic and anisotropic membrane constitu-
ents are almost homogeneously distributed/mixed across 
the whole vesicle surface in the absence of external force 
(see Figs. 4, 6). This is true for both cases, i.e., with and 
without considering the entropy of mixing in minimization 
of the membrane free energy. In the absence of external 
force the lateral segregation of the isotropic and anisotropic 
membrane components is stronger if the entropy of mixing 
is not considered, which results in the formation of thinner 
and more featured tubular protrusions (Fig. 4). The entropy 
of mixing enforces membrane constituents of different 
intrinsic curvatures to intermix, which leads to the forma-
tion of wider tubular protrusions, because more isotropic 
components are distributed also in the vesicle protrusion 
(Fig. 6).

The lateral segregation of the membrane constituents 
of different intrinsic curvatures and the consequent forma-
tion of membrane tubular protrusions may be facilitated by 
mechanical force from the actin cytoskeleton. Such force 
can stretch the vesicle membrane, which results in the for-
mation of a thinner and longer tubular vesicle protrusion 
and higher degree of lateral segregation of membrane con-
stituents (Fig. 5). The cytoskeleton force can induce the lat-
eral segregation of membrane components and the growth 
of membrane tubular protrusions on the vesicle surface in 
the regions which did not have the membrane protrusions 
before (see the second row in Fig. 7). We predicted a high 
degree of the lateral segregation of membrane constituents 
with different intrinsic curvatures if the actin force was 
applied, even in the case when the mixing entropy was 
taken into account in the minimization procedure. Note 
that for high relative vesicle volumes, the intrinsic curva-
ture of membrane components alone is not strong enough 
to induce the growth of prominent tubular membrane pro-
trusions when the entropy of mixing of different membrane 
components is taken into account (Fig. 7). In such a case, 
we have to take into account the external force of actin 
filaments in order to explain the pronounced segregation 
of different membrane components and the formation of 
prominent tubular protrusions (Fig. 7).

To conclude, cytoskeletal mechanical forces can 
induce the growth of thin tubular membrane protrusions 
and significantly reduce the effect of the entropy of mix-
ing, reflected in accumulation of anisotropic membrane 
constituents in tubular membrane protrusions. It should 
be emphasized that isotropic membrane constituents can 
induce/stabilize only undulated (necklace-like) mem-
brane protrusions but not tubular membrane protrusions 
as well (Fig. 9a, b). If undulated membrane protrusions 

Fig. 9  Vesicle shapes calculated for two-component membrane, 
where one component has high positive intrinsic curvature. The red 
color represents the highest possible concentration of the membrane 
component with high intrinsic curvature. The results of the Monte 

Carlo simulation for non-axisymmetric vesicle shape without actin 
cytoskeleton is presented in (a), while (b) and (c) show the axisym-
metric shapes obtained by the minimization of the free energy func-
tional. The vesicle in (c) is stretched by the force of actin filaments
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are stretched by the mechanical force of a cytoskeleton, 
they are transformed into tubular protrusions (Fig. 9c). 
Only anisotropic membrane constituents can themselves 
induce the growth of tubular membrane protrusions in the 
absence of cytoskeletal force.
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Kralj-Iglič V, Heinrich V, Svetina S, Žekš B (1999) Free energy of 
closed membrane with anisotropic inclusions. Eur Phys J B 
10:5–8
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V, Iglič A (2011) Elastic deformations in hexagonal phases stud-
ied by small-angle X-ray diffraction and simulations. Phys Chem 
Chem Phys 13(8):3100–3107

Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMa-
hon HT (2004) Bar domains as sensors of membrane curvature: 
the amphiphysin bar structure. Science 303(5657):495

Ramakrishnan N, Kumar PS, Ipsen JH (2010) Monte Carlo simula-
tions of fluid vesicles with in-plane orientational ordering. Phys 
Rev E 81(4):041922

Ramakrishnan N, Kumar PBS, Ipsen JH (2011) Modeling aniso-
tropic elasticity of fluid membranes. Macromol Theor Simul 
20(7):446–450

Ramakrishnan N, Ipsen JH, Kumar PS (2012) Role of disclinations in 
determining the morphology of deformable fluid interfaces. Soft 
Matter 8(11):3058–3061

Ramakrishnan N, Kumar PS, Ipsen JH (2013) Membrane-mediated 
aggregation of curvature-inducing nematogens and membrane 
tubulation. Biophys J 104(5):1018–1028

Rappolt M, Hodzic A, Sartori B, Ollivon M, Laggner P (2008) Con-
formational and hydrational properties during the-to-and-to hii-
phase transition in phosphatidylethanolamine. Chem Phys Lipids 
154(1):46–55

Saarikangas J, Zhao H, Pykäläinen A, Laurinmäki P, Mattila PK, Kin-
nunen PK, Butcher SJ, Lappalainen P (2009) Molecular mecha-
nisms of membrane deformation by i-bar domain proteins. Curr 
Biol 19(2):95

Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) Irsp53: 
crossing the road of membrane and actin dynamics in the forma-
tion of membrane protrusions. Trends Cell Biol 18(2):52–60

Seifert U (1997) Configurations of fluid membranes and vesicles. Adv 
Phys 46(1):13–137

Shlomovitz R, Gov NS (2008) Physical model of contractile ring ini-
tiation in dividing cells. Biophys J 94(4):1155–1168

Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. 
Cold Spring Harbor Perspect Biol 3(10):a004,697

Simunovic M, Voth GA, Callan-Jones A, Bassereau P (2015) When 
physics takes over: Bar proteins and membrane curvature. Trends 
Cell Biol 25(12):780–792

Singer SJ, Nicolson GL (1972) The fluid mosaic model of the struc-
ture of cell membranes. Science 175(4023):720

Smith G, Sirota E, Safinya C, Clark NA (1988) Structure of the l β 
phases in a hydrated phosphatidylcholine multimembrane. Phys 
Rev Lett 60(9):813



718 Eur Biophys J (2017) 46:705–718

1 3

Suetsugu S (2010) The proposed functions of membrane curvatures 
mediated by the bar domain superfamily proteins. J Biochem 
148(1):1–12

Templer RH (1998) Thermodynamic and theoretical aspects of cubic 
mesophases in nature and biological amphiphiles. Curr Opin 
Colloid Interface Sci 3(3):255–263

Umeda T, Nakajima H, Hotani H (1998) Theoretical analysis of shape 
transformations of liposomes caused by microtubule assembly. J 
Phys Soc Jpn 67(2):682–688

Veksler A, Gov NS (2007) Phase transitions of the coupled 
membrane-cytoskeleton modify cellular shape. Biophys J 
93(11):3798–3810

Venier P, Maggs AC, Carlier MF, Pantaloni D (1994) Analysis of 
microtubule rigidity using hydrodynamic flow and thermal fluc-
tuations. J Biol Chem 269(18):13353–13360

Wade RH, Hyman AA (1997) Microtubule structure and dynamics. 
Curr Opin Cell Biol 9(1):12–17

Walani N, Torres J, Agrawal A (2014) Anisotropic spontaneous curva-
tures in lipid membranes. Phys Rev E 89(6):062715

Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T (2009) Coordina-
tion of membrane and actin cytoskeleton dynamics during filo-
podia protrusion. PloS One 4(5):e5678

Zimmerberg J, Kozlov MM (2006) How proteins produce cellular 
membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

Zimmerberg J, McLaughlin S (2004) Membrane curvature: how bar 
domains bend bilayers. Curr Biol 14(6):R250–R252


	On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components
	Abstract 
	Introduction
	Model and methods
	Numerical minimization
	Monte Carlo method

	Results and discussion
	Conclusions
	References




