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Abstract

The physical properties of organic nanotubes attract increasing attention due to their potential benefit in technology, biology and medicine.

We study the effect of ion size on the electrical properties of cylindrical nanotubes filled with electrolyte solution within a modified Poisson–

Boltzmann (PB) approach. For comparison purposes, small hollow nanospheres filled with electrolyte solution are considered. The finite size of

the particles in the inner electrolyte solution is described by the excluded volume effect within a lattice statistics approach. We found that an

increased ion size reduces the number of counterions near the charged inner surface of the nanotube, leading to an enlarged electrostatic surface

potential. The concentration of counterions close to the inner surface saturates for higher surface charge densities and larger ions. In the case of

saturation, the closest counterion packing is achieved, all lattice sites near the surface are occupied and an actual counterion condensation is

observed. By contrast, the counterion concentration at the axis of the nanotube steadily increases with increasing surface charge density. This

growth is more pronounced for smaller nanotube radii and larger ions. At larger nanotube radii for small ion size counterion condensation may

also be observed according to the Tsao criterion, i.e. the counterion concentration at the centre is independent of the number of counterions in the

system. With decreasing radius the Tsao condensation effect is shifted towards physiologically unrealistic surface charge densities.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, much attention is being devoted to inorganic

and organic hollow cylindrical structures in the nanometer

range due to their potential benefit in technology, biology

and medicine [1]. Potential applications range from

microelectronics to microfluidics [2]. Among other sys-

tems, nanotubes have been found in different phospholipid

systems [2,3]. In cellular systems a direct transport

between different cells or cellular organelles has been

observed through hollow nanotubes or by carrier vesicles

guided by nanotubes [4]. Ion channels or pores in
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biological membranes and blood capillaries are also

examples for cylindrical nanotubes.

In some biological systems, the walls of organic nano-

tubes are charged and in contact with electrolyte solution.

Due to the surface charge of the walls, counterions and

coions of the electrolyte are, respectively, accumulated and

depleted near the walls. At the internal surfaces concave

electrical double layers of cylindrical geometry are formed

[5,6].

Concave electrical double layers may also be of

spherical shape, like in cavities which may be filled with

aqueous electrolytes. Examples from biology and colloid

chemistry are self-assembling dispersions such as spher-

ical inverse micelles, phospholipid vesicles and micro-

emulsions [5,7]. Such objects are formed by aggregation

of amphiphilic molecules in a way that the hydrophilic
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Fig. 1. Schematic presentation of a cylindrical electrical double layer of

concave shape, r is negative. The cations are accumulated near the charged

surface while the anions are depleted from this region.
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parts of the molecules are in contact with electrolyte

solutions, while the hydrophobic parts avoid such contact.

While micelles are small aggregates of amphiphilic

molecules in aqueous solutions, microemulsions are

formed in mixtures of amphiphiles, water and oil, where

domains of water (in oil) or oil (in water) are separated

by surfactant monolayers. Multilamellar vesicles can then

be formed by a number of surfactant bilayers separating

an internal compartment from the continuous phase of a

solution.

In thin nanotubes and small spherical vesicles, the

granularity of the constituting molecules, ions or atoms

approaches the smallest extension of the entire structure.

Therefore, the validity of the standard continuum approach

cannot be taken for granted, even for a qualitative

description of these systems [3,1]. A correct description

of the aqueous double layers should take the finite size of

the ions and water molecules into account, especially on

their inner surfaces [8–11]. A possible approach to the

improvement requires an extension of the classical con-

tinuum treatment based on the PB theory treating ions as

charged points [12–15].

A number of different attempts have been made to

incorporate steric effects into the PB equation. Freise [16]

introduced the excluded volume effect by a pressure-

dependent potential, while Eigen and Wicke [17] used a

thermodynamic approach, multiplying the numerical den-

sity of ions by a factor containing the number of the

vacant sites. More recently, the finite size of particles has

been incorporated into the PB theory in more transparent

ways, based on a lattice statistics model [8–11], functional

approaches [18–20] or on a model that takes the surface

charge correlation into account, while treating ions and

solvent molecules as hard spheres [21]. In addition to the

finite size of particles, the fluctuation potential has been

introduced [22]. These approaches lead to a better agree-

ment with Monte Carlo (MC) simulations for divalent

counterions [23]. For such ions, an even better agreement

of the MC simulations was found, also for divalent ions,

when the hypernetted chain integral equations were applied

[24,25].

This work aims to describe the effect of ion size on

the properties of the electrical double layer within

cylindrical nanotubes. Double layers within hollow

spheres are considered for comparison purposes. We use

a modified form of the PB theory that has been obtained

from the PB theory by introducing the excluded volume

effect in order to describe the counterion distribution and

the electrostatic potential near the charged surface. This is

accordingly designated EVPB theory in the text.

In addition, the counterion condensation will be

examined. Expressions for the free energy, the ion

distribution function and the differential equation for

the electrostatic potential will be derived in the

Appendix. All results will be compared to the classical

PB theory.
2. Theory

Charged cylindrical or spherical surfaces may create

concave electrical double layers when in contact with an

electrolyte solution. The surfaces are assumed to carry the

surface charge density r. The electrolyte solutions should be
composed of solvent molecules and M species of ions. The

geometry of cylindrical surfaces is described by radius r0 and

length l, while spherical surfaces are described by r0 (Figs. 1,

2). For reasons of symmetry, the electric field must vanish at

the cylinder axis or in the centre of the sphere.

The electrostatic interactions are described within the

mean field approximation while the finite size of the

particles in the solution is considered by means of the

excluded volume effect. The latter is taken into account

by a statistical mechanics description, where each particle

in the solution occupies one and only one site of a finite

volume. A lattice with an adjustable lattice constant has

been introduced [26]. All sites of the lattice are filled

with solvent molecules or ions. The density of the

number of lattice sites of the system ns is given by

ns ¼
XM
j¼0

nj rð Þ; ð1Þ

where n0 is the density of the number of solvent

molecules, nj are the densities of the number of ions

of the j-th species, with j =1, 2, . . . , M, and r is the

radial coordinate, respectively. ns can be calculated from

the volume of a three-dimensional lattice site Vs, ns=1 /

Vs. The lattice sites are taken to have equal volumes Vs,

which could be calculated from the lattice constant

Vs=a
3. Thus,

ns ¼
1

a3
: ð2Þ

Different values of the lattice constant a describe

different sizes of the ions. In the following the density of



Fig. 3. nct(r) and nco(r) for cylindrical (A) and spherical (B) concave

geometries. Electrostatic potential |e0(U0�Uc) /kT | for cylindrical (C) and

spherical (D) concave geometries in dependence on the radial distance (r).

The results of the EVPB theory with a =0.6 nm (solid lines) and the results

of the PB theory (dashed lines) are shown. The model parameters are

e =78.5, T =296 K, nco
c =0.1 mol/l, r0=3 nm and r =0.4 As/m2.

r0

Fig. 2. Schematic presentation of a spherical electrical double layer of

concave shape, r is negative. The cations are accumulated near the

spherical surface while the anions are depleted from this region.

K. Bohinc et al. / Bioelectrochemistry 67 (2005) 91–99 93
the number of counterions is referred to as concentration.

Changes in the counterion size have been simulated by

choosing an appropriate a.

The electrostatic field and the ion concentrations are

defined for all values of radial coordinates. For both

geometries of the charged surface, the mean electrostatic

potential U(r) can be calculated from the EVPB theory

(see Appendix):

d2U rð Þ
dr2

þ g
r

dU rð Þ
dr

¼ �
e0ns

XM
i¼1

vi nic=n0cð Þexp � vie0 U rð Þ � Ucð Þ=kTð Þ
 !

ee0 1þ
XM
i¼1

nic=n0cð Þexp � vie0 U rð Þ � Ucð Þ=kTð Þ
 ! ;

ð3Þ

where e0 is the elementary charge, vi is the valency of the

ions of the i-th species, nic denotes the concentration of

particles of the i-th species at r=0; Uc denotes the

electrostatic potential at the cylinder axis or in the centre

of the sphere, e is the relative dielectric constant of the

solution, e0 is the permittivity of vacuum, T is the

temperature and k is the Boltzmann constant. The constant

g depends on the geometry of the system. In spherical

geometry g =2 while in cylindrical geometry g =1.
The particle distribution functions are

nj rð Þ ¼
ns njc=n0c
� �

exp � vje0 U rð Þ � Ucð Þ=kT
� �

1þ
XM
i¼1

nic=n0cð Þexp � vie0 U rð Þ � Ucð Þ=kTð Þ

j ¼ 0; 1; 2; . . . ;M : ð4Þ

The Eqs. (3) and (4) are the result of the minimisation

procedure given in the Appendix.

In order to obtain the explicit dependence of nj and U
on distance r, the differential Eq. (3) was solved numeri-

cally. The first boundary condition states that the electrical
field is zero at the axis of cylinder and in the centre of

sphere:

dU rð Þ
dr

����
r¼0

¼ 0: ð5Þ

The second boundary condition in the vicinity of the

charged surface of concave shape demands a neutral overall

charge for the system:

dU rð Þ
dr

����
r¼r0

¼ � r
ee0

: ð6Þ

By integration of Eq. (3) we obtain:Z r0

0

XM
j¼1

e0vjnj rð ÞJ rð Þdr þ rS0 ¼ 0; ð7Þ

where in the spherical geometry J(r)=4kr2 and S0=4kr0
2

while in the cylindrical geometry J(r)=2krl and S0=2kr0l.
The first and second terms in Eq. (7) represent the charges

of the solution and the surface, respectively.

For numerical calculations, the fourth-order Runge–

Kutta method was combined with the shooting method and

applied to Eq. (3). For solving the equation calculations

were started at the axis of the cylinder or in the centre of the

sphere. The concentration of counterions was varied to

satisfy the boundary condition (6) for every given potential

Uc and concentration of coions at the axis of the cylinder or

in the centre of the sphere nco
c .



Fig. 4. nct
0 at the distance of closest approach to the charged cylindrical (A)

and spherical (B) concave surfaces. Electrostatic potential |e0(U0�Uc) /kT |

at the distance of closest approach to the charged cylindrical (C) and

spherical (D) concave surfaces as a function of |r |. Results of the PB theory

are given by dashed lines, whereas the calculations for a =0.6 nm are given

by solid lines. Model parameters are e =78.5, T =296 K, r0=3 nm and

nco
c =0.1 mol/l.

Fig. 5. Cylindrical electrical double layer of concave shape. nct
c as a function

|r | for two different radii of the cylinder r0=3 nm (thin lines) and r0=5 nm

(bold lines) are presented. The results of the PB theory are shown by dashed

lines, whereas the calculations for a =0.6 nm are shown by solid lines. The

model parameters are e =78.5, T =296 K and nco
c =0.1 mol/l.

Fig. 6. Spherical electrical double layer of concave shape. nct
c as a function

of |r | for two different radii of the sphere r0=3 nm (thin lines) and r0=5 nm

(bold lines) are presented. The results of the PB theory are shown by dashed

lines, whereas the calculations for a =0.6 nm are shown by solid lines. The

model parameters are e =78.5, T =296 K and nco
c =0.1 mol/l.
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3. Results

Fig. 3 presents the concentration profiles of the counter-

ion (Mct) and coion (Mco) concentrations as well as the

potential profiles for cylindrical and spherical double layers.

The figure also compares our EVPB results to the
Fig. 7. The profile nct(r) for cylindrical concave geometry. The results of

the EVPB theory with a =0.6 nm for r =0.7 As/m2 (dashed line), r =0.4

As/m2 (solid line) and r =0.1 As/m2 (dotted line) are shown. The model

parameters are e =78.5, T =296 K and nco
c =0.1 mol/l, and r0=3 nm.
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predictions of the classical PB theory for a symmetric

univalent electrolyte (vct =1 and vco=�1). The theoretical

predictions of the PB and EVPB theories differ significantly

for both geometries in the vicinity of the surfaces while they

come closer at the cylinder axis or the centre of the sphere.

In EVPB theory, the profile of counterion concentration

exhibits a plateau region near the surface for sufficiently

large a values, whereas for vanishing a the concentration of

counterions converges towards the value obtained by the PB

theory. Note that the concentration of coions at the cylinder

axis or in the centre of the sphere is always smaller than the

corresponding counterion concentration. This is a conse-

quence of the electroneutrality condition. In the model used

the charge overcompensation is not obtained [26].

Fig. 4A and B show the counterion concentration at the

surface in dependence on the absolute value of the r (|r|).
Fig. 4C and D show |U0�Uc| as a function of |r|, where U0

is the electrostatic potential at the charged surface and Uc is

the electrostatic potential at the axis of the cylinder and in

the centre of the sphere, respectively. The discrepancy

between classical PB and EVPB theories intensifies with

increasing |r|. In PB theory, the concentration of counter-

ions close to the charged surface nct
0 continuously increases

as a function of |r| at high surface charge densities too,

while it reaches a plateau in the EVPB theory (Fig. 4A and

B). For small |r|, the values of the electrostatic potential

near the surface coincide for both theories, while the

discrepancy increases with increasing |r|.
Figs. 5 and 6 show the concentration of counterions at

the axis of the cylinder (Mct
c) and in the centre of the sphere

(Mct
c) in dependence on |r| for two different radii of

cylindrical and spherical surfaces. In PB theory, the

counterion concentration at the axis of the cylinder or in
Fig. 8. dc as a function of |r | for two different radii of the cylinder r0=3 nm
(solid line) and r0=5 nm (dashed line). The EVPB theory was used. The

model parameters are e =78.5, T =296 K and nco
c =0.1 mol/l.
the centre of the sphere may saturate at an upper limit for

high surface charge densities [27,28] (dashed lines in Figs. 5

and 6). This feature is specific to concave surfaces confining

an electrolyte solution in PB theory. Nevertheless, saturation

can only be observed for larger radii of the concave surface.

Interestingly, no saturation of counterion concentration in

the centre has been observed in the EVPB theory.

Fig. 7 shows the counterion concentration profiles for

cylindrical electrical double layers for three different

values of a. The EVPB theory was applied to a symmetric

univalent electrolyte (vct =1 and vco=�1). For ions of

sufficient size (a=0.6 nm) and |r| a plateau region near

the charged surface occurs. The plateau region increases

with |r|. At small |r| no plateau is observed. Fig. 8 shows

the thickness of the plateau region dc as a function of |r|
for two different radii of the cylinder. dc increases with

increasing |r|, the increase is more pronounced for smaller

radii of the cylinder. The thickness dc has been defined as

the extension of the plateau, where the counterion

concentration drops to 99% of its surface value.
4. Discussion and conclusion

The introduction of the excluded volume effect in the

PB theory through the lattice model approach allows for

an improved description of the electrostatics of charged

cylindrical nanotubes and nanospheres filled with electro-

lyte solution. Even though the ion size is described by a

lattice constant, the ion concentration is defined at any

distance to the surface. Therefore continuous functions can

be derived for the particle distribution and the electrostatic

potential. The model distinguishes between occupied and

free lattice sites. Free lattice sites are assumed to be

occupied by water with a relative permittivity of 78.5.

Consequently, the ions are assumed to be suspended in a

continuous dielectric medium.

In PB theory, ions are considered to be dimensionless.

Thus, the counterion concentration near a charged surface

can increase boundlessly (compare to Fig. 3A,B). As a

result, the results of the PB theory show a continuous

increase in counterion concentration near the surface, with

increasing |r| (Fig. 4). In contrast to the PB theory, in

EVPB theory ions are assumed to have a finite size. This

assumption has a considerable effect on counterion

concentration and the electrostatic potential profiles. The

EVPB theory predicts a plateau of counterion concen-

tration close to the concave surface [9], a finding

supported by recent experimental findings on planar

electrical double layers [29]. The deviation from the

predictions of the PB theory must be attributed to the

steric effect (Figs. 3 and 4) where the number density of

ions cannot exceed the density of the lattice sites.

In PB theory a change in the behavior of the counterion

concentration profile in the vicinity of the surface, i.e.

counterion condensation, may be observed with increasing
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|r|. An indirect criterion for counterion condensation

within the PB for concave double layers was recently

introduced by Tsao [27,28]. Tsao stated that for suffi-

ciently large |r| the concentrations of counterions in the

vicinity of the geometrical axis of a cylinder or in the

centre of a sphere are not affected by growing |r|. This
behavior is analog to an equithermal system of vapor and

water where added evaporated water would undergo a

phase transition increasing the volume of the condensed

water phase. The condensed and the gaseous water phases

are at equilibrium and the vapor pressure is constant at a

given temperature.

The prediction of the PB theory may be well understood

since at large |r|, counterions are depleted from the central

regions due to the strong attraction by the charged surface,

leading to a constant counterion concentration in the central

regions of the solution (Fig. 5).

Nevertheless, one prerequisite for the observability of

this effect is a larger radius r0 in order to avoid

overlapping double layers of the opposite surfaces. An

analogous explanation applies to concave spherical double

layers (Fig. 6). Within the physiological range for

|r|�0.4 As/m2 counterion condensation according to

Tsao’s criterion occurs only for radii larger than r0=5

nm as can be seen in Figs. 5 and 6. It starts at around

|r|�0.2 As/m2.

In both the PB and EVPB theories, the fulfillment of the

Tsao criterion for counterion condensation depends on the

radius of the sphere and the cylinder. According to the Tsao

criterion, with decreasing radius, the condensation is less

pronounced at physiological |r| values, due to an overlap of

the double layers of the opposite surfaces (Fig. 7). Whereas

(according to the Tsao criterion) condensation may be

shifted towards higher |r| values in PB theory, it vanishes in

accordance with EVPB theory. This can be seen in Figs. 5

and 6 (solid curves) where the EVPB theory predicts a

monotonous increase in nct
c with |r|. This increase is more

pronounced for smaller nanotube radii (r0 ) and larger ion

radii due to a relative or absolute increase in the electrical

double layer thickness (Fig. 7). In the limit of very large

radii of the nanotubes, when the system approaches two

planar surfaces, the EVPB theory also predicts a constant

counterion concentration in the central region, consistent

with Tsao’s criterion.

For large |r| and a the EVPB theory predicts that all

lattice sites are occupied by counterions leading to a

plateau in the counterion concentration profile close to the

surface. In the limiting case of very large nanotube radii,

dc linearly increases with |r| (Fig. 8, dashed line). This

behavior is in keeping with the dense packing (condensa-

tion) model for planar charged surface, dc ¼ jrja3
e0

. For

smaller nanotube radii, geometry limits the available lattice

sites, leading to a growth in dc with |r| which is stronger

than in the linear regime for larger radii. At |r| where
dc=a the first counterion layer is completely occupied,

representing a single Helmholtz layer of thickness a with
linear electrostatic potential profile. The condition to be

met for the first layer is:

1

A

Z a

0

nctdV ¼ 1

a2
ð8Þ

which is equivalent to the condition dc=a (Fig. 8). It can

be seen (Fig. 8) that the first layer of the nanotubes of

radius r0=3 nm is completely occupied for |r|�0.65 As/

m2, while the second layer for |r|�0.9 As/m2.

Accordingly, two different counterion phases may exist in

the EVPB model, a condensed one of thickness dc=a,

dc=2a, . . near the charged surface and the electrolyte

solution with freely moving counterions, coions, and water.

Condensation represents a phase transition for the counter-

ions from a state where they are subject to the interplay of

electric and entropic forces to a state where the electrostatic

interaction defeats the entropic interactions arranging them in

a closely packed structure. The thickness of the condensed

layer dc increases with |r| and ion size (Fig. 8). The phase

properties of the condensed counterions are largely inde-

pendent of system parameter changes, e.g. a further increase

in |r|. The close packing of counterions near the charged

surface can be considered an actual condensation inherent to

the EVPB theory.

With decreasing radius, the number of lattice sites declines

faster in the spherical than in the cylindrical geometry.

Therefore the concentration of counterions at the axis of a

cylinder reaches a plateau at lower |r| than in the centre of a

sphere. In cylindrical geometry, counterion condensation is

observed at lower |r| than in spherical geometry.

Nanotubes of erythrocyte membrane were obtained by

the membrane budding induced by adding certain deter-

gents to the erythrocyte suspension [30]. As the inner side

of the erythrocyte membrane contains phosphatidylserine

molecules that are at physiological pH values negatively

charged the observed nanotubes would represent a system

that could be subject to the theory considered in this

work. Membranes with narrow capillaries possessing

highly charged walls are employed in reverse osmosis

[31]. The physico–chemical properties of the capillaries

are mainly determined by their electrical double layer

properties. In particular, the electrical double layer thick-

ness, particle and ion size influence the flow of a solution

through the capillaries. It seems very likely that in EVPB

theory the relationships inside the pores, especially the

excluded volume effect, are described in a more realistic

way than in most other theories. Nevertheless, a thorough

investigation of the consequences of this model in order to

achieve a better understanding of the process of reverse

osmosis is beyond the scope of this manuscript.

The EVPB theory makes it possible to study the physical

properties of hollow nanotubes at high surface charge

densities, confining large ions to the inner electrolyte

solutions. In contrast, the PB theory is limited to |r| values
below |r|�0.15 As/m2, where the number density of

counterions exceeds the number density of lattice sites
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(Fig. 4). EVPB theory can easily be extended to more

complicated nanosystems and geometries.

One restriction in the presented EVPB approach is that

ion–ion interactions other than the hard core interaction are

neglected. Nevertheless, in the case of monovalent ions, the

ion–ion interaction effects are of minor importance [32].

However, they may play an important role for multivalent

and macro-ions [33].

We assumed a permittivity of 78.5 for the surrounding

water. Nevertheless, it is known that bound water has a

reduced permittivity [34]. In addition, high ion concentra-

tions will reduce the permittivity, especially in the vicinity of

the charged surface. Taking these effects into account, e.g. by

a position-dependent permittivity, will result in a minor

correction of our calculations. It will lead to a slightly higher

field close to the surface and reduce the condensation effect.

To improve the statistics of the system for cylinders, a

length much greater than the radius has been assumed. While

the number of lattice sites in a sphere decreases with radius in

all possible directions, their number in the cylinder decreases

only in the radial but not in the axis direction. Accordingly, in

EVPB theory, the statistical double layer description inside

nanotubes is not as restricted as in nanospheres.

This study has looked at the influence of ion size on the

counterion concentration and the electrostatic potential near

the inner surface of hollow cylindrical nanotubes filled with

electrolyte solution. In conclusion, we have shown that for

larger ions and larger surface charge densities, the effect of

finite ion size is considerable and that strong discrepancies

between the PB and EVPB theories may exist. The

deviation from the predictions of the PB theory can be

attributed to the steric effects in the EVPB approach. The

PB theory predicted higher counterion concentrations close

to the concave surface than the EVPB theory did, where the

counterion concentration is limited to a plateau for large a.

The plateau is reached when all available lattice sites of a

layer have been filled.

Furthermore, we have examined the Tsao criterion for

counterion condensation within the EVPB theory. We have

been able to show that the concentration of counterions at the

axis of the nanotube did not reach an upper limit at high

surface charge density (Tsao condensation [27,28]) as

predicted by the PB theory. Within EVPB theory, Tsao’s

condensation condition is not applicable in nanotubes.

Alternatively, the close packing of large counterions near a

highly charged surface, i.e. actual counterion condensation,

predicted by EVPB theory can be observed directly.
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Appendix A. Minimization of the free energy

Assuming local thermodynamic equilibrium and taking

into account energies of the individual particles in the

solution, the expression for the free energy, the ion and

solvent distribution functions and the differential equation

for the electric potential are derived within the mean field

approximation.

We divide the system into cells [8,35] of volume

DV=2krlDr in cylindrical geometry and DV=4kr2Dr in

spherical geometry, where Dr is the dimension of the cell in

the r direction. We assume that Dr is small compared to the

distance over which macroscopic properties change essen-

tially. In the cell we have Nj ions of the j-th species, j =1,

2, . . . , M, and N0 solvent molecules. The finite size of

particles is introduced by means of the excluded volume

effect. A lattice is introduced with all sites occupied: the

particles are distributed over Ns
cell lattice sites of equal

volume in the cell

XM
j¼0

Nj ¼ N cell
s : ðA:1Þ

Any cell is open with respect to heat, and closed with

respect to matter. The cell is characterized by the variables

DV, temperature T, and the number of the particles of all

species Nj, j=0, 1, . . . , M, where j =0 corresponds to water

molecules.

The free energy is obtained starting from the energy

contributions of individual particles which are treated as

independent and indistinguishable. The expression for the

free energy of the solution in the cell can be obtained from the

statistical mechanical relation DF =�kTlnQcell [8,35,36],

DF ¼ DW el þ kT
XM
j¼0

njln
nj

nsq
0
j

 !
DV ðA:2Þ

where Qcell is the canonical partition function of the cell and

DWel is the electrostatic potential energy of the cell. The

second term of the r.h.s. of Eq. (A.2) represents the entropic

contribution to the free energy, qj
0 is the non-electrostatic

contribution to the partition function of a single particle of the

j-th species subject to no electrostatic variable. The density of

the number of particles of the j-th species nj, j =0, 1, . . . , M

and the density of the number of sites ns were introduced

nj ¼
Nj

DV
and ns ¼

N cell
s

DV
: ðA:3Þ

The Eq. (A.2) represents the free energy of the chosen

cell. To obtain the free energy of the whole system, we sum

the contributions of all cells, i.e. perform the integration
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over the extension of the system in r. The electrostatic

energy of the whole system is calculated by taking into

account that the electrostatic potential at the site of a given

ion is created by all other ions and the charged surface. The

energy can be expressed using the equations of the classical

theory of electromagnetism [8,35]:

W el ¼ 1

2
ee0

Z r0

0

E2 rð ÞJ rð Þdr ðA:4Þ

where E(r) is the electric field strength and J(r) is the

Jacobian. In cylindrical geometry J(r)=2krl, while in

spherical geometry J(r)=4kr2. Due to the cylindrical and

spherical geometries the electrostatic field depends only on

the radial coordinate.

The free energy of the whole system, subject to the local

thermodynamic equilibrium, is

F ¼
Z r0

0

f E rð Þ; n rð Þð ÞJ rð Þdr; ðA:5Þ

where the density of the free energy is given by

f E rð Þ; n rð Þð Þ ¼ 1

2
ee0E

2 rð Þ þ kT
XM
j¼0

nj rð Þln nj rð Þ
nsq

0
j

 !
;

ðA:6Þ

and n(r)= (n0, n1, . . . , nM) is the density of the number of

particles.

The particle distribution functions nj, j =0, 1, . . . , M and

the electric field strength are not known in advance. Thus, in

the following, explicit expressions for functions nj(x), j =0,

1, . . . , M and E(r) are obtained using the condition of the

free energy to be at its minimum at thermodynamic

equilibrium of the whole system. The condition for the

global equilibrium

dF ¼ 0; ðA:7Þ

is subject to

& the global constraint requiring that the total number of

particles of each species per volume of the whole system,

�j; is constantZ r0

0

nj rð Þ � Kj

� �
J rð Þdr ¼ 0; j ¼ 0; 1; 2; . . . ;M ;

ðA:8Þ

& the local constraint requiring the validity of the

differential form of Gauss’s law ee0lE =.(r),
where . rð Þ ¼ e0

PM
j¼1 vjnj rð Þ is the volume charge

density,

ee0
1

rg
B rgE rð Þð Þ

Br
� e0

XM
j¼1

vjnj rð Þ ¼ 0; ðA:9Þ
in the spherical geometry g =2 while in the

cylindrical geometry g =1,
& and the local constraint requiring that all lattice sites are

occupied

ns ¼
XM
j¼0

nj rð Þ: ðA:10Þ

The method of undetermined multipliers [37] has been

used to find the extreme of the free energy Eq. (A.5)

taking into account the constraints (Eqs. A.8 A.9 A.10).

The variational problem can be expressed by Euler

equations

BL*

BE
� d

dr

BL*

B
BE

Br

	 

0
BB@

1
CCA ¼ 0; ðA:11Þ

BL*

Bnj
¼ 0; j ¼ 0; 1; 2; . . . ;M ; ðA:12Þ

where

L* E rð Þ; n rð Þ; BE rð Þ
Br

; g̃g1 rð Þ; g̃g2 rð Þ
	 


¼ f E rð Þ; n rð Þð ÞJ rð Þ þ
XM
j¼0

kj njðrÞ � Kj

� �
J rð Þ

� g̃g1 rð Þ ee0
1

rg
B rgE rð Þð Þ

Br
� e0

XM
j¼1

vjnj rð Þ
 !

þ g̃g2 rð Þ ns �
XM
j¼0

nj rð Þ
 !

; ðA:13Þ

kj, j=0, 1, . . . , M, are the global Lagrange multipliers

while g̃1 and g̃2 are the local Lagrange parameters. In the

following the local Lagrange multipliers are expressed as

g̃g1 rð Þ ¼ g1 rð ÞJ rð Þ; g̃g2 rð Þ ¼ g2 rð ÞJ rð Þ: ðA:14Þ

Upon insertion of Eq. (A.14) into Eq. (A.13) we obtain

L* E rð Þ; n rð Þ; BE rð Þ
Br

; g1 rð Þ; g2 rð Þ
	 


=J rð Þ

¼ f E rð Þ; n rð Þð Þ þ
XM
j¼0

kj nj rð Þ � Kj

� �

� g1 rð Þ ee0
1

rg
B rgE rð Þð Þ

Br
� e0

XM
j¼1

vjnj rð Þ
 !

þ g2 rð Þ ns �
XM
j¼0

nj rð Þ
 !

; ðA:15Þ
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At r=0 the electrostatic field vanishes

dU
dr

����
r¼0

¼ 0; ðA:16Þ

meaning that the electrostatic potential at r =0 is constant,

Ujr¼0 ¼ Uc: ðA:17Þ

Eqs. (A.11, A.12) determine the local Lagrange

multipliers

g1 rð Þ ¼ U rð Þ; ðA:18Þ

g2 rð Þ ¼ kT ln
nj

nsq
0
j

þ 1þ kj
kT

 !
þ e0vjU rð Þ: ðA:19Þ

From Eqs. (A.18, A.19) and the condition (Eq. A.17) the

particle distribution functions (Eq. (4)) are obtained. The

Gauss’s law (Eq. A.9) and the particle distribution

functions (Eq. (4)) give the differential equation for the

electrostatic potential U(r) (Eq. (3)).
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