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Abstract

The inverted hexagonal phase (HII) belongs to the biologically most significant

nonlamellar lipid phases in biomembranes. Hence the geometric properties and

conditions of transition to the HII phase are nowadays widely studied. In this

chapter we offer a brief overview on the mechanics of the HII lipid phase. In our

derivation of the free energy of lipid monolayers, we assume that lipid mole-

cules are in general anisotropic with respect to the axis perpendicular to the

membrane plane. In our model the expression for the lipid monolayer free

energy consists of two energy contributions: the bending energy which involves

also a deviatoric term, and the interstitial energy which describes the deforma-

tion energy due to stretching of the phospholipid molecule chains. On the basis

of the derived expression for the lipid monolayer free energy, we theoretically

predict optimal geometry and physical conditions for the stability of the

inverted hexagonal phase. Using the Monte Carlo simulated annealing method,

we theoretically describe first steps in the La–HII phase transition, which may

contribute to a better understanding of different biologically important

processes within biomembranes.
1. Introduction

One of the main components of biological membranes are phospho-
lipids. They have amphiphatic character, that is, they comprise a polar
headgroup as well as nonpolar hydrocarbon chains in one molecule. Such
molecules in aqueous solution undergo a self-assembling process and form
various structures. Biologically important lipid/water systems are known for
their rich polymorphism [1]. Driving force of this process is predominantly
the hydrophobic effect where the hydrophilic (polar) surfaces are in contact
with aqueous solution while the hydrophobic (nonpolar) parts composed of
hydrocarbon chains are hidden from water [2, 3]. The most common
and biologically most relevant phase is the fluid lamellar lipid bilayer
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phase (La). The bilayer of lipid molecules represents the basic building block
of the plasma membrane, which encloses the cell interior. Nevertheless,
nonlamellar model membranes are subject of increasing interest [1, 4–6],
due to their importance in living organisms and due to their promising
technical applications such as in drug delivery [7, 8], gene transport and
nanotechnology [9].

The curvature of different monolayer and bilayer lipid structures (Fig. 1)
depends to a great extent on the intrinsic shape of the phospholipid mole-
cules, which in turn depends on the temperature, degree of hydration,
presence of specific enzymes, pH, etc. [10].
A B

C

D E

Figure 1 Schematically depicted polymorphism of phospholipid aggregates. Aggre-
gated forms with appropriate shapes of phospholipid molecules: (A) spherical micelle,
(B) cylinder, (C) bilayer, (D) inverted cylinder, and (E) inverted micelle.
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Flat lipid bilayers are formed preferentially, when the lipid molecules have
cylindrical shapes (Fig. 1C), whereas cylindrical monolayers are formed when
the lipid molecules are wedge shaped (as depicted in Fig. 1B and D). Conical
and inverted conical shapes of lipids favor spherical (Fig. 1A) and inverted
spherical (Fig. 1E) micellar shapes, respectively (see also Ref. [11]).
1.1. Mathematical Description of Membrane Curvature

Biological membranes may be in the first approximation considered as
curved and deformable smooth plates that are described by two principal
radii (curvatures) at each point of the surface. Consider for the moment the
phospholipid monolayer as a pure mathematical surface. At every point P
on this surface one can find a vector normal to the surface and the
corresponding normal plane which contains the normal vector (Fig. 2).
There is an infinite number of such normal planes, but only two orthogonal
normal planes contain curves of intersection with maximum and minimum
curvature (see Fig. 2). These two curvatures are named the two principal
curvatures of the surface at the given point P and are defined as [1]

C1 ¼ 1

r1
and C2 ¼ 1

r2
ð1Þ
1/C1

1/C2

First principal
normal plane

Normal

P

Curves
of intersection

Second principal
normal plane

Figure 2 A schematic figure of the phospholipid monolayer. In the point P the normal
surface is shown together with a pair of orthogonal principal planes that define the two
principal curvatures C1 and C2.
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For the sake of later computations, the principal curvatures are written in a
tensor notation as a diagonalized curvature tensor:

�
C ¼ C1 0

0 C2

� �
ð2Þ

Within the theory of elasticity, the membrane curvature at a given point is
usually described by the mean and the Gaussian curvature, that are invariants
of the curvature tensor

�
C (Eq. (2)). The mean curvature H is related to the

trace of the curvature tensor
�
C and the Gaussian curvature K is the

determinant of C [1]:

H ¼ C1 þ C2

2
ð3Þ
K ¼ C1C2 ð4Þ

For the lipid monolayer of finite thickness, the following convention was
adopted [1]: when, for instance, the pivotal plane (molecular area in pivotal
plane does not change upon bending deformation [12]) bends toward the
chain region, we define the curvature positive (C > 0), whereas when the
pivotal plane bends toward the water region the curvature is negative (C< 0)
(Fig. 3). According to this convention the mean curvature H (Eq. (3)) can be
positive or negative, that is, the monolayer can be regular or inverted. For
positive values of K the planes are naturally convex or concave and bend
round to form closed shells, micelles or inverted micelles, respectively. On the
other hand, when K is negative the principal curvatures are of opposite sign,
that is, the plane is saddle-like [1].

For planar and spherical surfaces the principal curvatures are equal while
for saddle-like and cylindrical planes the principal curvatures are different.
High anisotropy in the curvature (a large difference between the two
C > 0 C < 0 

Water regionChain region

Pivotal arc

Figure 3 Sign convention of the curvatureC¼C1 cos
2 bþC2 sin

2 b of the normal cut
of the lipid monolayer. The curvature C is positive when the monolayer is bent toward
the chain region and negative when the monolayer is bent toward the water region. The
angle b describes the orientation of the normal plane with respect to the first principal
normal plane.
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principal curvatures) has been revealed in numerous membrane systems, for
example, in phospholipid bilayer nanotubes [13–16], torocytic endovesicles
of erythrocyte membranes [17, 18], phospholipid bilayer membrane pores
[19, 20] and narrow necks of phospholipid bilayers connecting buds to the
mother membrane [21]. To explain the stability of these structures instead
of the Gaussian curvature another invariant is advantageous in description of
membrane free (elastic) energy, namely the curvature deviator D [21]:

D ¼ j C1 � C2 j
2

ð5Þ

The invariants H, K, and D are connected through the relation:

H2 ¼ D2 þ K ð6Þ

1.2. Influence of Spontaneous Curvature on the
Self-Assembling Process

Obviously the curvature of membranes depends on the intrinsic shape of the
phospholipid molecules (see Fig. 1). Hence noncylindrically shaped phos-
pholipids self-assemble in aqueous solutions in nonplanar structures. The
tendency to curve the shape of the monolayer without any external torques
and forces is called the spontaneous (intrinsic) curvature [10]. The definition
of the principal intrinsic curvatures that define the intrinsic shape of the lipid
molecules (see Fig. 4) is very similar to the description of membrane
curvature. The principal intrinsic curvatures are defined as [22, 23]:

C1m ¼ 1

rm1

ð7Þ

and

C2m ¼ 1

rm2

ð8Þ

where rm1 and rm2 are the principal radii of a monolayer that would
completely suit the shape of the molecule. Written in tensor notation:

�
Cm ¼ C1m 0

0 C2m

� �
ð9Þ
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Figure 4 Molecular sketches describing differences between isotropic and anisotropic
phospholipid molecules and values of their principal intrinsic curvatures.
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where
�
Cm is defined as an intrinsic curvature tensor [21, 23].

Similar to the mean curvature H, we can define the mean intrinsic
curvature Hm, which is now related to the molecular shape:

Hm ¼ C1m þ C2m

2
ð10Þ

and intrinsic curvature deviator of the molecule:

Dm ¼ j C1m � C2m j
2

ð11Þ

If the intrinsic principal curvatures are different (C1m 6¼C2m), the molecules
are anisotropic. If the intrinsic curvatures are equal (C1m ¼ C2m), the
membrane constituents are isotropic (Fig. 4). Isotropic constituents with
zero intrinsic curvatures (C1m ¼ C2m ¼ 0) will tend to form planar mono-
layers, while the constituents having inverted conical shape (C1m ¼ 0,
C2m < 0) will favor the formation of an inverted hexagonal structure [11]
(see also Fig. 1). The intrinsic principal curvatures account for the geometrical
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Author's personal copy
shape of the lipid molecule and the local interactions of the molecule with its
surroundings, including the hydration effects [24].
2. Inverted Hexagonal Phase

The inverted hexagonal phase (HII) is one of the lipid mesophases that
are important for many biological processes in nature. Understanding the
mechanisms of their formation and stability, and their physical properties
may help us to elucidate their biological functions.
2.1. Relevance of Nonlamellar Phases in Biological Systems

The bicontinuous cubic phase, inverse hexagonal phase, and inverse micel-
lar cubic phase belong to the biologically most relevant nonlamellar meso-
phases. These mesophases resist excess of water and thus they are stable
under certain conditions in biological systems [6, 25].

It is known that a wide range of phospholipids which occur in biological
organisms may self-assemble into nonlamellar structures when they are
extracted from cells and rehydrated in aqueous solution. However, despite
the fact that many nonlamellar phases have been undoubtedly identified also
in various biological systems [26], still little is understood concerning their
function. The induction of nonplanar mesophases might play a role in the
regulation of protein function, further, membrane fusion for instance in
endo- and exocytosis is thought to be dependent on such highly curved
lipid structures. It is also supposed that interbilayer tight junctions host
nonbilayer structures. Direct evidence for the formation of the stable HII

phase was found in paracrystalline inclusions of the retina [27].
The nonlamellar structures of phospholipids are also common in some

species of bacteria. It was suggested that the bilayers of bacteria are close to
the transition from lamellar to nonlamellar structure [10]. Many different
types of bacteria can enzymatically change the intrinsic curvature of phos-
pholipids, consequently, they can prefer the nonlamellar phases [10].
2.2. Geometry of the Inverted Hexagonal Phase

The lipids in the inverted hexagonal phase are self-assembled in long tubes
arranged in a hexagonal lattice. Figures 5 and 6 show the geometry of the HII

phase: two neighboring tubeswith diameter r are located at the distance a. The
phospholipid chains point outward from the cylinder surface defined as the
pivotal plane while the headgroups form polar nanotubes filled with aqueous
solution. Experiments revealed high anisotropy in the curvature (one principal
curvature is equal to negative inverse value of radius of the tube and the second
principal curvature is equal to zero) of tubes of the HII phase.



C1= C2= 0

La

C1= 0 C2< 0

HII

10 nm

Figure 5 A scheme and a corresponding electron density map of the lamellar fluid (La)
phase (left) and of the inverted hexagonal (HII) phase (right). The configurations of the
lipid molecules are indicated. In the La phase both principal curvatures are equal to
zero, while in the HII phase one of the principal curvatures is equal to zero and the other
one is negative. The data for the electron density reconstructions are taken from Ref.
[28]. The maps depict the POPE/water structures at the phase transition temperature of
74 �C (compare also Table 1). Adapted from Ref. [29].

La

d

r

r

r

y

x

a

HII

dpol

z0

z0

z0

a

Figure 6 Geometry of the lamellar and inverted hexagonal phases. One bilayer and
one neighboring monolayer are depicted for the lamellar phase. The lattice unit of
lamellar phase (d-spacing) (d ) and distance of polar region between the two bilayers
(dpol) are denoted. For the inverted hexagonal phase three cylinders of radius r at
the distance a are depicted. z0 denotes the equilibrium length of hydrocarbon chains.
The HII phase requires stretching or compressing of some of the hydrocarbon chains as
shown schematically. Adapted from Ref. [29].
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It can be seen in Fig. 6 that not all lipid tails in the hexagonal lattice have
the same length. There are triangular regions (called voids) between neigh-
boring tubes that are considerably energetically expensive, because the lipid
chains in these regions need to stretch beyond the average length z0. In
theoretical studies of stability of inverted hexagonal phases, it is therefore
necessary to take into account an energy term which accounts for the
stretching of the hydrocarbon chains in the void regions [24, 30–32].

Some recent studies have shown that the cross sections of the tubes in the
inverted hexagonal phase is not precisely circular but it is rather an interme-
diate between a circle and a hexagon [31, 33]. In our case we suppose, for
sake of simplicity, that the cross section is circular.
2.3. Models of the Transition of the Lamellar
to Inverted Hexagonal Phase

Transitions between different phospholipid phases and mechanisms that
drive these transitions are of special interest. To interpret the experimental
data and to contribute to a better understanding of underlying mechanisms,
different models have been put forward [24, 28, 30, 34, 35].

The majority of models of the formation of the inverted hexagonal phase
have in common the assumption that nucleation starts with a linearly
localized lipid rearrangement. Based on freeze-fracture electron microscopy
experiments, a deformation pair of intramembrane cylinders embedded in a
tight junction was proposed [35], and also monolayer embedded lipid
tubes forming via the coalescence of a ‘‘pearl string’’ of inverted micellar
intermediates (IMIs) was suggested by Hui et al. [36]. In 1986 Siegel further
elaborated this model of the La–HII transition [30]. He proposed a three-step
process with forming of intermediates driven by changes in temperature and
lipid composition. The first step is formation of IMIs, which forms between
two sufficiently close apposed bilayers. The IMI can diffuse within the plane
of the membrane and form IMI coalescence representing the second step.
Two possible ways of IMI coalescence were suggested. Two spherical
micelles can fuse into a single rod shaped micelle and form rod micellar
intermediates (RMIs) or they can separatewithin the coalescence intermediate
and form line defects (LDs) [30].

Based on the temperature-dependent experimental results from differ-
ential scanning calorimetry and small-angle X-ray scattering, a similar view
on La–HII transition is given by Rappolt et al. [28, 34]. The hypothesis of
the growth mechanism of the first few rods is connected with spontaneous
creation of the line defect (water core) at the transition temperature. The
first rod is created due to the spontaneous monolayer curvature, which
induces the formation of new water cores. The pivotal plane arrangement
corresponding to the first few steps of transition was proposed in Ref. [34]
(see Figs. 7 and 8). The first cylinder of the HII phase forms from the linearly
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localized lipid rearrangement between two bilayers. Thus, a system of one
cylinder, two monolayers, and bulby closures on both sides of the cylinder
originates. The bulby closures are created from neighboring disjunct layers
as a consequence of reducing void apolar regions. The two outer monolayer
leaflets follow the contours of the cylinder and the bulby closures. This
configuration is the smallest unit to study the nucleation of the HII–La
transition (Fig. 7).
A

D E

20 nm

r = 2.44 nm r = 2.67 nm

r

r = 1.52 nm r = 2.44 nm

ΦIam= Φhex

B C

Coplanar case

First rod: ΦIam= Φhex Full hydration of first rod

Figure 7 Intermediate steps in the formation of a cylinder between two bilayers. The
structural schemes base on structural data of POPE recorded at the transition tempera-
ture T ¼ 74 �C [28]. Pivotal interfaces are outlined with full lines and for the ease of
interpretation lipid molecules are superimposed in the first four panels. (A) The fluid
lamellar phase can be decomposed into steric monolayer thickness (2.27 nm) and free
water layer thickness per lipid molecule (0.27 nm). (B) Allowing for spontaneous splay
of lipid molecules a line defect may form, which is integrated in the stack of bilayers in a
coplanar fashion. (C) If one sets the water concentration per lipid in the line defect,
Fhex, to be equal to the water concentration given in the fluid lamellar phase,Flam, then
the radius of the pivotal plane increases from r¼ 1.52 to 2.44 nm. (D) This panel shows
the formation of a first rod under the condition of Flam ¼ Fhex. (E) Finally, full
hydration of the first cylinder in between of two bilayers increases the pivotal plane
radius to r ¼ 2.67 nm. Loci for the formation of new cylinders are marked with stars.
Sketches are adapted from Ref. [34].
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dH= A = 0.65 nm2
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dH=

0=ς
ς
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1.13 nm

Wedge angle Y = 19°
AW= 0.38 nm2

AH= 0.52 nm2
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AT= 0.92 nm2

(r = 2.67 nm)

Figure 8 Simplest space filling molecular models for the fluid lamellar (A) and the
inverse hexagonal phase (B). The models are derived from structural data of POPE at
T¼ 74 �C, at which the La-phase coexists with the HII-phase [28]. (A) The steric length
of a lipid molecule of 2.27 nm can be divided into headgroup extension, dH (0.8 nm),
and hydrocarbon chain length, z0 (1.47 nm). The area per lipid was determined to be
0.65 nm2. (B) Simplest anisotropic molecular model for PE lipids in the inverted
hexagonal phase. The different molecular areas are defined graphically, which are the
lipid–water, the headgroup, the pivotal and terminal interface, respectively. Explicit
values for the areas are given. Under the assumption that area per lipid at the headgroup
position AH is squared, it follows that about 19 lipid molecules are necessary for a
full revolution in fully hydrated lipid cylinder (compare Fig. 7). Panel B is adapted from
Ref. [34].
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2.4. Models of Free Energy of the Inverted Hexagonal Phase

In general, solving the stability conditions for different lipid phases as well as
conditions for the transition between lipid phases is a problem of defining
the free energy of the system and its minimization. In the following a brief
overview of theoretical models of La to HII phase transition and the
corresponding expression for the free energy of the system are described.

Kozlov et al. [24] studied the energy of the hexagonal phase in the
HII–La–HII reentrant phase transition of dioleoylphosphatidylethanolamine
(DOPE) upon changes in hydration and temperature. Combining osmotic
stress and X-ray diffraction experiments, the spontaneous curvature (R�1

0 )
and the monolayer bending constant (kc) of the HII phase were determined.
Further, they considered a theoretical model describing the stability of
hexagonal and lamellar lipid phases by minimization of the free energy
consisting of elastic, hydration, interstitial, and van der Waals energies.

In the model of Kozlov and colleagues, the free energy of the hexagonal
phase was approximated by the elastic energy of local bending deformation
[37]:

FH ¼ NH
l

1

2
kca0

1

R
� 1

R0

� �2
ð12Þ
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where NH
l is the number of lipid molecules, kc is the bending elasticity of

the lipid monolayer, a0 is the area per lipid molecule, 1/R is the curvature of
the pivotal plane of the lipid monolayer, and 1/R0 is the spontaneous
curvature in fully hydrated (unstressed) state. For convenience, it was
assumed that the free energy of fully hydrated hexagonal phase is
0 (1/R ¼ 1/R0) [24].

The free energy of the lamellar phase was assumed as follows:

FL ¼ NL
l

1

2
P0la0M exp � dw

l

� �

�NL
l a0

AH

24pd2w
þNL

l a0
1

2
kc

1

R2
0

�NL
l gi

ð13Þ

where NL
l is the number of lipid molecules in the lamellar phase and dw is

the thickness of the water layer separating the bilayers. The first term is the
energy of hydration repulsion between the bilayers (P0 and l are preexpo-
nential factor and characteristic length of the repulsion, respectively). The
second term is the leading term in the energy of van der Waals interaction
between the bilayers (AH is the Hamaker constant [11]). The last two terms
describe the difference between the free energies in the fully hydrated
hexagonal and lamellar phases and give a constant contribution independent
of the distance between the bilayers. The third term is the energy of
‘‘unbending’’ the lipid monolayer to flatness according to Eq. (12) and the
last term represents the energy associated with voids in the hexagonal lattice.
For simplicity gi > 0 was referred as a curvature-independent part of the
interstitial energy (curvature-dependent part is accounted for within the
elastic energy of inverted hexagonal phase FH (Eq. (12))) [24].

Kozlov et al. assumed that all parameters in Eqs. (12) and (13) except the
intrinsic curvature R0

�1 are independent on temperature. By assuming a
negligible dependence of gi on temperature and equating the free energies in
the hexagonal and lamellar phases in excess water in the temperature for
reentrant transition (TH ¼ 10 �C) gives [24]

gi ¼ 1

2
kca0

1

½R0ðTHÞ�2
þ 1

2
P0a0l exp � dwmax

l

� �

� a0AH

24pðdwmaxÞ2
ð14Þ

where NL
l and NH

l are taken to be equal and the free energy of the inverted
hexagonal lipid phase is assumed to be FH ¼ 0 (i.e., 1/R = 1/R0), dw max
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represents the equilibrium spacing in the lamellar phase in the absence of
osmotic stress and TH is the temperature of the hexagonal–lamellar reen-
trant transition in excess water. gi was computed by introducing the
measured parameters into Eq. (14) and is a positive constant in this case.

In summary, Kozlov et al. have described a model of La–HII–La reen-
trant transition. On the basis of experiments, they have derived structural
parameters and all of the force constants defining the energetic terms of the
HII and La lipid phases. They found an expression of interstitial energy of
the inverted hexagonal phase as a constant difference between HII and La
phases at the transition point.

Another study on the hexagonal phase was performed by Rand et al.
[38]. In this work, two types of energy contributions to the free energy of
the lipid monolayer were taken into account:

GHII
¼ 1

2
kca0

1

R
� 1

R0

� �2

þPVw ð15Þ

The first term in Eq. (15) introduces local bending energy and the second
term is the osmotic energy, where kc is the bending modulus, a0 is the area
per lipid molecule, R and R0 are the actual local radii of the curvature and
the intrinsic radius of curvature at the pivotal plane, respectively, P is the
difference in osmotic pressure between the outer bulk and inner confined
solution, and Vw is the volume of water per lipid inside the cylinder [38].
Without consideration of the energy of interstices they made two approx-
imations. The first approximation is that the water cylinders are perfectly
circular in cross section (Fig. 9A). Second, the interstitial energy is proposed
to be independent on the size of the hexagonal unit cell [38].

There exist two different approaches to express the interstitial (void)
energy of the inverted hexagonal phase. In the first approach, rods of
inverted hexagonal phase are assumed to be circular in cross section and
the interstitial energy is assumed to be proportional to some imaginary
surface of the voids between hexagonally packed cylinders [39] (Fig. 9A).
In a second approach the interstitial energy was accounted in the terms of
tilt and splay deformation of the phospholipid chains which have to fill the
hexagonal unit cell while the cross section of neutral plane of lipid rods is
assumed to be hexagonal [40] (Fig. 9B). Both approaches result in a
proportionality constant by equating the free energies of the lamellar and
inverted hexagonal phases at the transition temperature.

Malinin and Lentz [31] later improved the model of Rand et al. [38]
(Eq. (15)), since the improved model included an energy cost due to voids
(interstitial energy), see Fig. 9. To calculate the interstitial energy they
assumed that the cross section of pivotal plane is intermediate between
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C

x

y

Figure 9 Schemes of different approaches to the expression of the free energy models
of inverted hexagonal phase: (A) Circular cross section—Siegel [39] and Rand et al.
[38], (B) hexagonal cross section—Hamm and Kozlov [40], (C) intermediate between
circular and hexagonal cross section—Malinin and Lentz [31].
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circular and hexagonal geometry (Fig. 9C), thus they parameterized the
shape of the cross section:

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2p � x2

q
þ d0 1� 4x2

d2p

 !2

ð16Þ

where x, y are coordinates of the pivotal plane, dp is the distance from the
axis of a rod to the pivotal plane in interaxial direction, and d0 is the
maximal deviation from circular cylindrical geometry. Using Eq. (16) they
computed the volumes of the water, voids, and the total unit cell volume.
With assuming that the interstitial energy of inverted hexagonal phase is
proportional to the volume of voids, the total free energy per lipid molecule
is then derived as

g ¼
A0ðKb=2Þ

ðdp=2
�dp=2

½ð1=RpÞ � ð1=Rp0
Þ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
dx

ðdp=2
�dp=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
dx

þ KvVv þPVw

ð17Þ



252 Š. Perutková et al.
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where Kv is a proportionality coefficient representing the free energy of a
unit of void volume, Vv and Vw are the volumes of the void and of the

water, respectively and dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
is the differential of the arclength [31].

The theoretical model of Malinin and Lentz included deviations from
circularity in the inverted hexagonal phase cross section. The interstitial
energy Kv (Eq. (17)) turned out to be constant, was derived from the
volume of the voids in the hexagonal lattice.

In contrast to these models of interstitial energy gi (Eq. (14)) and Kv in
Eq. (17) we have expressed a relation for the interstitial energy dependent on
stretching of the phospholipid chains on account to fill the voids directly. We
also developed a new formalism to involve possible anisotropy of phospholipid
shapes in our model calculations. In the following sections the new bottom up
approach concerning the description of monolayer bending and packing
frustration in the formation of the inverted hexagonal phase is outlined.
3. Free Energy of Lipid Monolayers

It was shown in Ref. [24] that the free energy of the phospholipid
monolayer in hexagonal phase may be expressed in terms of bending,
interstitial, hydration, and van der Waals energy contribution. However,
the contribution of the hydration energy in the excess water conditions is
insignificant and also van der Waals energy only slightly contributes to the
total free energy. Thus, we consider for the total free energy of the
hexagonal phase two energy contributions: the energy of local bending
and the interstitial energy (voids filling energy). Starting from a single
molecule energy and applying the methods of statistical physics, the free
energy of a lipid monolayer (bilayer) was derived [15, 21, 41, 42]. The local
bending energy of laterally homogeneous monolayer (bilayer) [37, 43, 44]
was recovered; however, an additional contribution due to average orienta-
tional ordering of lipid molecules, that is, the contribution of the deviatoric
bending [45, 46] was included [15, 21, 42]. The average orientational
ordering of anisotropic phospholipids lowers the free energy of the system;
the effect is more pronounced for larger anisotropy of lipid molecules and
stronger membrane curvature anisotropy [21].
3.1. Bending Energy of Lipid Monolayers

For better understanding we briefly repeat the derivation of the bending
energy per lipid, which in general may be anisotropic [21]. This energy of a
single lipid molecule depends on mismatch between curvature tensors

�
Cm

(Eq. (9)) and
�
C (Eq. (2)). In general the curvature tensors

�
Cm and

�
C have
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different orientations, that is, they are rotated by an angle o. To express
their mismatch we introduce the mismatch tensor

�
M:

�
M ¼

�
R
�
Cm

�
R�1 �

�
C ð18Þ

where
�
R is transformation matrix for rotation:

�
R ¼ coso �sino

sino coso

� �
ð19Þ

The single molecule energy at a given point of the membrane should be a
scalar quantity, hence it may be expressed by two invariants of the tensor

�
M,

trace, and determinant:

wb ¼ K1

2

�
Trð

�
MÞ
�2

þ K2 Detð
�
MÞ ð20Þ

where K1 and K2 are constants [21].
Eq. (20) can be rewritten as

wb ¼ ð2K1 þ K2ÞðH �HmÞ2

� K2

�
D2 � 2DDm cosð2oÞ þD2

m

� ð21Þ

where H is the mean curvature of a membrane (Eq. (3)), Hm is the mean
intrinsic (spontaneous) curvature of the molecule (Eq. (10)), and D and Dm

are the curvature deviators of the membrane and the molecule (Eqs. (5) and
(11)), respectively [21]. In the following we introduce the definitions:

2K1 þ K2 ¼ x
2
and K2 ¼ � xþ x*

4
ð22Þ

Constants x and x* describe the strength of intermolecular interactions.
Using the definitions of x and x*, Eq. (21) can be rewritten in the form

EðoÞ ¼ x
2
ðH �HmÞ2

þ xþ x*
4

�
D2 � 2DDm cosð2oÞ þD2

m

� ð23Þ
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For sake of simplicity we assume that x ¼ x*. This equality yields
K1 ¼ �K2. It is obvious that the energy expressed by Eq. (23) reaches its
minimum when cos(2o) ¼ 1 and its maximum when cos(2o)¼ �1. In the
first case the systems of tensors

�
Cm and

�
C are aligned (o ¼ 0) or rotated by

the angle o ¼ p:

Emin ¼ x
2
ðH �HmÞ2 þ x

2
ðD2 þD2

mÞ � xDDm ð24Þ

while in the second case the systems are rotated by the angle o ¼ p/2 or
o ¼ 3p/2:

Emax ¼ x
2
ðH �HmÞ2 þ x

2
ðD2 þD2

mÞ þ xDDm ð25Þ

To derive the deviatoric bending energy of the whole monolayer, the
membrane monolayer is divided into small patches that contain a sufficient
large number of lipid molecules in order to apply the methods of statistical
mechanics [21]. The principal curvaturesC1 andC2 are taken to be constant
over the patch and phospholipid molecules are considered to be equal and
independent. Considering a simple two state model there are M equivalent
molecules within the patch. Each molecule can exist in state of lower energy
Emin or higher energy Emax. It means that Nmolecules are assumed to be in
the state with Emax and consequently (M � N) molecules in the state with
Emin as shown in the next equation:

ED

kT
¼ N

Emax

kT
þ ðM �NÞEmin

kT
ð26Þ

where ED is the deviatoric bending energy of the membrane patch. The
energy of the patch is divided by k (Boltzmann constant) and T (thermody-
namic temperature). Introducing Eqs. (24) and (25) into Eq. (26) gives

ED

kT
¼ M

Eq

kT
� M

2
�N

� �
deff ð27Þ

where

Eq

kT
¼ x

2kT
ðH �HmÞ2 þ x

2kT
ðD2 þD2

mÞ ð28Þ
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and

deff ¼ ð2xÞDmD

kT
ð29Þ

deff is called the effective curvature deviator [21].
Another contribution to the bending energy is the direct interaction

between molecules. At most the molecules interact with their nearest neigh-
bors. It is assumed that if the actual shape of the membrane is in tune with the
local curvature field, tails of themoleculesmove in average closer together and
this leads to lowering energy. On the other side, if the molecules are oriented
less favorable the average chain packing is less dense. This causes increasing of
the energy. It is considered that this effect is proportional to deff (local effective
curvature deviator). Direct interaction energy ofNmolecules that exhibit less
favorable average packing is taken into account by the expression

EN

kT
¼

~k

kT
Ndeff ð30Þ

while the direct interaction energy of molecules that exhibit more favorable
average packing (negative contribution) is described by

EM�N

kT
¼ �

~k

kT
ðM �NÞdeff ð31Þ

where ~k is the interaction constant [21].
The total energy caused by direct interaction is given by summation of

Eqs. (30) and (31) divided by 2 as to avoid counting each molecule twice:

Ei

kT
¼ �

~k

kT

M

2
�N

� �
deff ð32Þ

The total bending energy of the patch is thus

Ep

kT
¼ ED

kT
þ Ei

kT
ð33Þ

whereED/kT is the contribution of the averagemutual orientation of the local
curvature tensor and intrinsic curvature tensor (deviatoric bending) and Ei/kT
is the contribution of the direct interaction between the neighbor molecules.

We consider all the patches to have a constant area Ap, a constant
number of molecules M and a constant temperature T of the system.
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The phospholipid molecules within the system are treated as indistinguish-
able. We assumed that the system is in thermodynamical equilibrium and
only two states are possible just like in the description of a two-orientation
model of noninteracting magnetic dipoles in the external magnetic field
[47]. In our model the external magnetic field is represented by curvature
deviator D [21]. By analogy, N molecules are in state with maximal energy
and (M � N ) molecules are in state with minimal energy. The number of
possibilities isM !/N !(M�N )! while the corresponding energy is Ep.N can
be any number from 0 toM. The canonical partition functionQP(M, T, D)
of M molecule in the patch of the membrane is therefore

QP ¼
XM
N ¼ 0

M !

N !ðM �NÞ! exp � Ep

kT

� �
ð34Þ

where k is the Boltzmann constant. Using Eqs. (27)–(34) gives

QP ¼ qM
XM
N ¼ 0

M !

N !ðM �NÞ! exp deff 1þ
~k

kT

� �
M

2
�N

� �� �
ð35Þ

where by considering Eq. (28)

q ¼ exp � Eq

kT

� �
ð36Þ

Using the binominal (Newton) formula in summation of the finite series in
Eq. (35) yields

QP ¼ 2q cosh
deff

�
1þ ð~k=kTÞ

�
2

0
@

1
A

2
4

3
5
M

ð37Þ

The Helmholtz free energy of the patch is FP ¼ �kT ln QP. Combining
Eqs. (35)–(37) yields the free energy of the patch:

FP ¼ M
x
2
½ðH �HmÞ2 þD2 þD2

m�

�kTM ln 2cosh

�
1þ ð~k=kTÞ

�
xDmD

kT

0
@

1
A

2
4

3
5 ð38Þ
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The bending energy of the monolayer is given by the summation of
the contributions of the all patches of the monolayer, i.e. integration is
performed over the whole area A:

Fb ¼
ð
A

n0x
2

½ðH �HmÞ2 þD2 þD2
m� dA

�n0kT

ð
A

ln 2 cosh
x
�
1þ ð~k=kTÞ

�
DmD

kT

0
@

1
A

2
4

3
5dA ð39Þ

where n0 is the area density of the lipid molecules, x is the constant
describing the strength of the interaction between a single lipid molecule
and the surrounding membrane continuum, k is the Boltzmann constant, T
is temperature, ~k is the constant describing the direct interaction between
lipid molecules [21], and dA is the area element of the lipid monolayer.

If we consider surfaces with small curvature deviators D or molecules
with smallDm, we can substitute the term ln(cosh(x)) in Eq. (39) by the first
term in Taylor expansion: ln(cosh(x)) ffi ln(1 þ x2/2) ffi x2/2. Thus, our
general expression for monolayer bending energy transforms into Helfrich
expression for local bending energy of lipid monolayer [37]:

wb ¼ kc

2
ð2H � C0Þ2 þ kGK ð40Þ

where wb is the area density of the monolayer bending energy, while the
constants kc, kG, and C0 are defined as

kc=n0 ¼ x
2
� ð1þ ~k=kTÞ2x2D2

m

4kT
ð41Þ

kG=n0 ¼ � x
2
þ ð1þ ~k=kTÞ2x2D2

m

2kT
ð42Þ

and

C0 ¼ Hm 1þ ½1þ ð~k=kTÞ�2xD2
m

2kT

" #
ð43Þ

The constant C0 represents spontaneous (intrinsic) curvature of the lipid
monolayer.



258 Š. Perutková et al.
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In the simplest case, where only isotropic phospholipid molecules within
the lipid monolayer are taken into account (Dm ¼ 0), the constants are
defined as

kc=n0 ¼ x
2

ð44Þ
kG=n0 ¼ � x
2

ð45Þ

while the expression for the spontaneous (intrinsic) curvature is equal to the
mean curvature of the lipid monolayer:

C0 ¼ Hm ð46Þ

3.2. Interstitial Energy of the Inverted Hexagonal Phase

In this section we are interested in the derivation of a dependence for an
energy contribution from ‘‘voids’’—interstitial energy, which was already
discussed in Section 2.2 [1, 24, 31]. The need of additional interstitial energy
contribution in the HII phase appears due to the special packing geometry of
the inverted hexagonal phase (compare with Section 2).

In the lamellar phase La, the monolayers have a constant thickness and
there are no voids in the mid-plane of the bilayer. On the other hand, in the
inverted hexagonal phase, the distance between two adjacent monolayers
varies over the monolayer surface. Some of the lipid tails have more space,
while others are squeezed with respect to an average length z0 (Fig. 6). To
avoid water pockets, the hydrocarbon tails of lipid molecules have to stretch
accordingly. The void-filling energy contribution due to lipid stretching
can be expressed on the basis of Hooke’s law [48]:

fd ¼ tðz� z0Þ2 ð47Þ

where z is the actual length of the fatty acid chain and t is the proportion-
ality constant reflecting the stiffness of the chains (stretching modulus). We
suppose that the area density of the contact energy is given as

lc ¼ tðz� z0Þ2n0 ð48Þ

where n0 is the area density of phospholipid molecules (n0¼ 1/a0). The total
contact energy is given as



Stability of the Inverted Hexagonal Phase 259

Author's personal copy
Fi ¼
ð
A

lc dA ð49Þ

where we integrate over the whole area of lipid monolayer A. The Eq. (49)
can be written in the form

Fi ¼ Ytn0

ð
l

ðz� z0Þ2dl ð50Þ

where dl is the element of the length of the curve corresponding to
phospholipid monolayer in the projection of hexagonal phase shown in
Fig. 6 and Y is the length of the inverted hexagonal tube.

To estimate the actual length of hydrocarbon chain z, cylindrical coor-
dinates are introduced. The length of hydrocarbon chains may be estimated
from hexagonal geometry of the lattice. From the rectangular triangle
depicted in Fig. 10 it follows:

z ¼ a

2 cos’
� r ð51Þ

Because of hexagonal symmetry, Eq. (51) is valid for the contact region of
two adjacent lipid cylinders, that is, for 1/12 of the area of one lipid
cylinder. The values of the angle ’ are therefore defined in the range of
z

r

a

j

r

j

Figure 10 Scheme of two neighboring inverted lipid tubes in hexagonal lattice.
The lipid tails have to stretch in order to fill voids in the hydrocarbon region. The
symbol a denotes the HII phase lattice constant and r denotes the radius of the pivotal
plane of the HII phase. The actual length of hydrocarbon tails (z) depends on the angle ’.
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’ 2 0;
p
6

h �
ð52Þ

If ’ ¼ 0, the length of hydrocarbon chains z is equal to (a/2) � r. At the
upper limit of the range of ’, the length of the hydrocarbon chain is equal to
ða= ffiffiffi

3
p Þ � r.
Considering the cylindrical transformation (r d’ ¼ dl ), the symmetry of

the problem (12 identical segments) and the expression for the length of
hydrocarbon chains (Eq. (51)), Eq. (50) can be written in the form

Fi ¼ Ytn012r
ðp=6
0

a

2 cos’
� r � z0

� �2

d’ ð53Þ

After solving the integral in Eq. (53), the contact energy of one lipid
cylinder (Eq. (53)) can be written as

Fi ¼ 12Ytn0r
a2

ffiffiffi
3

p

12
� aðr þ z0Þ ln

ffiffiffi
3

p þ p
6
ðr þ z0Þ2

� �
ð54Þ
3.3. Total Free Energy per Lipid Molecule

The total free energy per lipid molecule in inverted hexagonal phase can be
computed as

f ¼ E

M
ð55Þ

whereM is the total number of lipid molecules in the system with energy E.
The total number of molecules can be calculated from the total area of
membrane A and the area corresponding to one lipid molecule (a0), that is,
the area density of the lipid molecule (n0):

M ¼ A

a0
¼ n0A ð56Þ

The total area of one lipid cylinder in the inverted hexagonal phase is

A ¼ 2prY ð57Þ
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From summation of Eqs. (39) and (49) it follows that the free energy per
lipid molecule in the HII phase can be expressed as

F ¼ Fb þ Fi

2pn0Yr
¼ x

2
½ðH �HmÞ2 þD2 þD2

m�

� kT ln 2 cosh

�
1þ ð~k=kTÞ

�
xDmD

kT

0
@

1
A

2
4

3
5

þ 6

p
t

a2
ffiffiffi
3

p

12
� aðr þ z0Þ ln

ffiffiffi
3

p þ p
6
ðr þ z0Þ2

 !
ð58Þ

Equations (1) and (3) yield for cylindrical geometry of the HII phase
H ¼ �1/2r and D ¼ jHj. The first two terms in Eq. (58) represent the
bending energy contribution and the third term is interstitial energy contri-
bution to the free energy.
4. Estimation of Model Constants

In order to determine the free energy of different configurations of the
lipid monolayers, the values of the model constants were estimated. The
value of interaction constant x was estimated from monolayer bending
constant x ¼ 2kca0, where for POPE kc ¼ 11kT is the bending constant
[49] and a0 ¼ 0.65 � 10�18 m2 is the area per phospholipid molecule [28].
The reference (nonstretched) length of the phospholipid tails z0 (Fig. 6) was
taken to be 1.30 nm [28]. In calculation of the interstitial energy the lipid
stretching modulus t was taken to be in the range from 0.95kT nm�2 to
95kT nm�2 (see Ref. [48]). For the sake of simplicity it was taken that the
molecules favor cylindrical geometry, that is jHmj ¼ Dm. The effect of the
temperature was simulated by increasing the intrinsic curvatures jHmj and
Dm with increasing temperature which is consistent with increased spread-
ing of the phospholipid tails while the headgroup extensions in POPE
remain relatively unchanged. The range of the intrinsic curvatures was
taken to be from 0 to 0.4 nm�1, corresponding to curvature radii down
to 1 nm. To study the effect of the deviatoric bending, also the hypothetical
case where the molecules are isotropic (Dm ¼ 0) was considered.
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5. Determination of Equilibrium Configuration

of Planar and Inverted Cylindrical Systems

5.1. Numerical Solution

To show the importance of the interstitial energy, we compare three
different geometries of lipid monolayers: planar, cylindrical, and spherical.
The systems were described as surfaces with constant principal curvatures.
In the planar system,H¼D¼ 0, in the inverted spherical systemH¼�1/rs
and D ¼ 0, while in the inverted cylindrical system H ¼ �D ¼ �1/2r,
where r is the radius of the cylinder and rs is the radius of the sphere. The
minimal value of the free energy of a unit patch of the lipid monolayer with
respect to the mean curvature H was calculated by using Eq. (58) while the
model constants are given in Section 4.
5.2. Results of Equilibrium Configurations of Planar
and Inverted Cylindrical Systems

To explain the effect of individual contributions to the free energy, we first
determine the equilibrium configuration obtained by minimization of the
bending energy alone (first two terms in Eq. (58)). There are three different
geometries compared in Fig. 11: planar (corresponding to lamellar La
phase), spherical (corresponding to inverted micellar MII phase), and cylin-
drical (corresponding to inverted hexagonal HII phase), see also Fig. 1.
Figure 11 shows the equilibrium bending energy per lipid molecule depen-
dent on the mean intrinsic curvature Hm for anisotropic molecules, for
which jHmj ¼ Dm (panel A) and isotropic molecules, for which Dm ¼
0 (panel B). For small jHmj ¼ Dm, the bending energy increases with
increasing jHmj in all three geometries (panel A). In the MII and La phases,
which are isotropic with respect to the curvature (D ¼ 0), there is no
orientational ordering of the molecules and the bending energy monoto-
nously increases also for larger jHmj ¼ Dm. In the HII phase, however, the
nonzero values of both the intrinsic curvature deviatorDm and the curvature
deviator D give rise to a negative energy contribution of the deviatoric
bending. Therefore, the equilibrium free energy reaches a maximum upon
an increase of Dm (which for this particular choice of molecules it is equal
to jHmj), but then decreases at a certain threshold, and such the HII

phase becomes energetically the most favorable. Summing up, for small
jHmj ¼ Dm, the MII phase has the lowest bending energy, while at larger
jHmj ¼ Dm, the HII phase becomes the most favorable due to the average
orientational ordering of phospholipid molecules. The effect is stronger for
higher values of ~k describing the direct interaction between phospholipid
tails (Fig. 11A).
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Figure 11 The equilibrium bending energy per lipid molecule Fb/n0A in dependence
on the intrinsic mean curvature Hm for the La, MII, and HII phases: (A) a system
composed of anisotropic molecules (Dm ¼ jHmj) and (B) a system composed of
isotropic molecules (Dm ¼ 0). For the bending contribution, see Eq. (58). Adapted
from Ref. [29].
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Figure 11B shows that for isotropic molecules (having Dm ¼ 0, i.e.,
C1m ¼ C2m, see also Fig. 2), the MII phase is always favored, that is, the
calculated energy per lipid Fb/n0A in the MII phase is equal to the reference
value and is the smallest comparing to the energy of the La and the HII

phase. We note that for isotropic molecules there can be no energy lower-
ing due to the average orientational ordering of the molecules since all
orientations of the lipid molecules are energetically equivalent.

The deviatoric bending of anisotropic molecules may thus alone explain
the stability of the HII phase at higher temperatures. At lower temperatures,
the MII phase is energetically favored except for jHmj ¼ Dm ¼ 0, where the
La phase is the stable phase. At small jHmj ¼ Dm, however, the equilibrium
radii of the simulated MII phase are so large that this case would correspond
to flat membrane systems. For some intermediate jHmj ¼Dm, the simulated
MII phase would consist of aggregated micelles of a given size, however
such a configuration is actually not observed [50, 51].

To obtain a better agreement with experimental observations also in the
intermediate range of jHmj ¼ Dm, we include the effect of void filling
energy by using a simple model, where the void-filling energy is considered
constant for a given geometry (see also Ref. [24]). Figure 12 shows the
minimal free energy F/n0A ¼ Fb/n0A þ Fi/n0A in dependence on
the intrinsic mean curvature Hm for the La, HII, and MII phases. Here Fi
is the interstitial energy, n0 is the area density of the lipid molecule, and A is
the area of the whole monolayer (see Eqs. (39) and (54)). Since the energy
contribution of voids is smaller in the system of close packed inverted
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Figure 12 The equilibrium free energy per lipid molecule Fb/n0Aþ w consisting of the
contribution of bending and of a constant for the void filling energy per lipid molecule
in dependence on the intrinsic mean curvature jHmj for the La (w ¼ 0), HII (w ¼ 1kT )
and MII (w ¼ 2kT ) phases: (A) Dm ¼ jHmj and (B) Dm ¼ 0, ~k=kT ¼ 1. Adapted from
Ref. [29].
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cylinders than in the system of close packed inverted spheres, the value of
the void-filling energy per lipid molecule Fi ¼ w was taken to be lower for
cylinders than for spheres. It was estimated from the results of Kozlov et al.
[24] that w should be of the order of kT [24], therefore we took for the HII

phase w ¼ 1kT and for the MII phase w ¼ 2kT.
In Fig. 12A and B the curves corresponding to the HII and MII phases

in Fig. 11 are shifted up for different constants w, respectively, and the
overall picture is now more realistic. It can be seen in Fig. 12A and B that
for small Dm ¼ jHmj the La phase is energetically the most favorable, since
it requires no void-filling energy. For anisotropic molecules (Fig. 12A) at a
certain threshold Dm ¼ jHmj, the HII phase becomes energetically the
most favorable due to the average orientational ordering of the lipid
molecules. In the isotropic case (Fig. 12B), all curves monotonously
increase; however, the curve corresponding to the La phase increases faster
and therefore it would eventually cross with the curve corresponding to
the HII phase. However, the value of Hm where the intersection would
take place would be very high (out of range given in Fig. 12, where the
maximal value 0.4 nm�1 already corresponds to a cylinder with a radius of
only 1.25 nm).

In short, the effects shown in Fig. 12A indicate that in the simple model
where the interstitial energy is taken to be constant within a phase [24, 29],
an increase of Dm ¼ jHmj, which is caused by the increase of temperature
can induce the transformation from La to HII lipid phase. Taking into
account the interstitial energy for small jHmj (lower temperature) renders,
the La phase is energetically the most favorable, while at a certain threshold



Stability of the Inverted Hexagonal Phase 265

Author's personal copy
Dm ¼ jHmj (higher temperature), the HII phase becomes energetically the
most favorable.

Having eliminated the MII phase due to high packing frustration
(Fig. 12), in the following, we compare only the La and the HII phases by
using an improved model for the void filling energy, where stretching of the
lipid tails in the actual hexagonal geometry is taken into account (Fig. 6 and
Eq. (52)). Figure 13 shows the free energy per lipid molecule F/n0A in
dependence on the intrinsic mean curvature Hm for the La and the HII

phase.
We can compare the total free energy per molecule for anisotropic and

isotropic phospholipid molecules in dependence on the mean intrinsic
curvature Hm. It can be seen in Fig. 13 that there are three curves
corresponding to the inverted hexagonal phase with different stiffness con-
stants t and one curve corresponding to the lamellar phase. For stiff hydro-
carbon chains (high values of t), the lamellar phase has lower energy than
the inverted hexagonal phase, while for decreasing t, the inverted hexago-
nal phase is energetically more favorable than the lamellar phase for high
enough jHmj. Isotropic lipid molecules in the inverted hexagonal phase also
exhibit the lowest energy for less stiff hydrocarbon chains.

By comparing Fig. 13A and B, it is important to point out that
the anisotropy of phospholipid molecules evokes a steeper increase of the
absolute value of the energy difference between the lamellar and the
inverted hexagonal phases with temperature and therefore promotes and
stabilizes the HII phase profoundly.
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Figure 13 Free energy per lipid molecule Fb/n0A consisting of the bending and the
interstitial contributions in dependence on the intrinsic mean curvature of lipid mole-
cules jHmj in the La and HII phase for various stiffnesses of hydrocarbon chains t for (A)
jHmj ¼ Dm and (B) Dm ¼ 0. See Eq. (58). ~k=kT ¼ 1. Adapted from Ref. [29].
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For a more detailed study of the HII phase we have constructed graphs its
structural parameters. Figure 14 shows the dependence of the cylinder
radius r and of the distance between the centers of the lipid cylinders a,
respectively, (Fig. 6), on the intrinsic curvature jHmj for three values of t of
anisotropic lipid molecules. The HII phase is composed of lipid cylinders
with small radius r and small separation a for lipids of large mean intrinsic
curvatures. Decreasing the absolute value of the mean intrinsic curvature
jHmj increases both the radius of the HII cylinders and the lattice length.
However, cylinders of large radii increase the void space and the
corresponding stretching of hydrocarbon chains. Therefore, the maximum
radii of the cylinders are limited by the energy of interface region between
the cylinders. If the hydrocarbon chains are stiff (large value of t), the
creation of voids is energetically unfavorable. In this case, the small radii
of cylinders are preferred as they provide small void spaces (Fig. 14A). On
the other hand, if the stretching of hydrocarbon chains does not require
much energy (small t), larger radii of hydrocarbon chains are permitted.

It is instructive to compare the given plots with experimental data
[28, 34] (Fig. 14, dashed lines). First, it teaches us that realistic value of
the stretching moduli t most probably lie between 0 and 20kT nm�2 (for
large enough t, e.g., t ¼ 95kT nm�2 no realistic dimensions of the HII

lattice can be predicted). Second, the range of realistic intrinsic mean
curvatures �Hm lies probably in the range of 0.1�0.2 nm�1. Note that
this comes close to the value of the mean curvature�H of the POPE/water
system (Table 1) and is also in agreement with values of intrinsic curvatures
of lipids given by other authors [52]. The effect of contact energy in the
t = 0.95 kT nm–2 t = 0.95 kT nm–2
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Figure 14 Structural parameters of the HII phase for the case where Dm ¼ jHmj.
(A) The optimal unit cell parameter a and (B) the optimal pivotal plane radius r (core
center to polar/apolar interface) are plotted versus the absolute value of the mean
curvatureHm for different lipid chain rigidities t. The two horizontal dashed lines mark
the realistic values for a and r, respectively (Table 1). For definitions of a and r,
see Fig. 6. ~k=kT ¼ 1. Adapted from Ref. [29].



Table 1 Geometrical parameters of the La and the HII phases at T ¼ 74 �C

Parameter La ¼ 74 �C HII ¼ 74 �C

D, a (nm) 4.99 7.24

dpol, r (nm) 2.5 2.67

z0 (zmin, zmax) (nm) 1.47 1.13 (0.95, 1.51)

a0 (nm
2) 0.65 0.65

H (nm�1) 0 0.187

The structural parameters are defined in Fig. 6. The experimental values are taken from Ref. [28].

Stability of the Inverted Hexagonal Phase 267

Author's personal copy
stabilization of the hexagonal phase is obvious if the value of t is large
enough. Large diameter of the lipid cylinder r produces larger voids that are
energetically unfavorable.

5.3. Influence of the Direct Interaction Constant k~

Figure 15 shows the effect of the direct interaction constant ~k [21] on the
calculated free energy per lipid molecule. The energy ~k=kT was estimated
by the van der Waals interactions between the tails of orientationally
ordered and orientationally disordered nearest neighbors of a given mole-
cule [21].

It can be seen in Fig. 15 that for low values of ~k=kT the behavior of the
anisotropic lipid molecules in our theoretical model are energetically close
to the behavior of isotropic molecules.

6. Lamellar to Inverted Hexagonal

Phase Transition

6.1. Determination of Pivotal Map of Nucleation Contour
by Minimization of Monolayer Bending Energy

Following the nucleation model of the La–HII transition given in [28, 34],
the surface of the monolayer forming a closure is described by the radius
vector r ¼ (x, y, z(x)) (Figs. 7 and 16), wherefrom the mean and the
Gaussian curvatures are

2H ¼ � @2z
@x2

1þ @z
@x

	 
2� �3=2 ð59Þ

and

C1C2 ¼ 0 ð60Þ
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Figure 15 Influence of the direct interaction constant ~k on the calculated free energy
per lipid molecule F/n0A in the HII phase. Comparison with free energy per isotropic
phospholipid molecule is given.
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Figure 16 Parametrization of the pivotal surface. Two bulby closures (objects 3) are
placed between adjacent bilayers (objects 2) and a cylinder (object 1). The geometry of
the system is symmetrical with respect to the x-axis.
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The surface is given in terms of the arclength l, so that sin c ¼ dz/dl and
cos c ¼ dx/dl. Considering the above definitions, the mean curvature is
expressed as 2H¼ 2D¼ dc/dl, while the area element is dA = Y dl. Due to
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symmetry, only the part of the contour above the x-axis is considered in
determination of the equilibrium shape of the closure.

The coordinates, the area, the area element, and the bending energy are
written in dimensionless form. Normalizing the curvatures and distances by
an arbitrary unit of length z0 (in our case we set z0 ¼ 1 nm) gives dimen-
sionless curvatures:

h ¼ z0H ; d ¼ z0D; hm ¼ z0Hm; dm ¼ z0Dm ð61Þ

and a dimensionless arclength:

~l ¼ l

z0
ð62Þ

The area element is normalized to Yz0. The bending energy is normalized
to n0xY/2z0:

fb ¼
ð
ðz� zmÞ2 d~l þ

ð
ðd2 þ d2mÞ d~l

� k
ð
ln½2 cosh½

�
1þ ð~k=kTÞ

�
#2dmd�� d~l

ð63Þ

where

k ¼ 1

#
¼ 2kTz20

x
ð64Þ

To minimize the bending energy (63), a functional

L ¼ 1

2

dc

d~l
� zm

 !2

þ 1

4

dc

d~l

 !2

� k ln
�
2 cosh

�
ð1þ ~k=kTÞ#2dmd

��

� l cosc� dx

d~l

 !
� n sincþ dz

d~l

 ! ð65Þ
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is minimized by solving a system of Euler–Lagrange equations:

@L

@c
� d

d~l

@L

@c~l

� �
¼ 0 ð66Þ
@L

@x
� d

d~l

@L

@x~l

� �
¼ 0 ð67Þ
@L

@z
� d

d~l

@L

@z~l

� �
¼ 0 ð68Þ

wherec~l ¼ dc=d~l, x~l ¼ dx=d~l, and z~l ¼ dz=d~l. By introducing the variable

U ¼ x
dc

d~l
ð69Þ

a system of equations (66)–(68) yields

dU

d~l
¼ U

x
coscþ ðl sinc� n coscÞx

1� ðk~#2
d2mÞ=

�
cosh2ð~#dmU=xÞ

�h i ð70Þ

� �

l ¼ const; n ¼ const; ~# ¼ # 1þ k~

kT
ð71Þ

where l and n are local Lagrange multipliers. The system of equations
(70)–(71) was solved numerically by using the Merson method to yield
the equilibrium contour map of the pivotal plane of the bulby closure as
shown in Fig. 16.

6.2. Determination of Equilibrium Configuration of Lamellar
to Inverted Hexagonal Phase Transition by Monte Carlo
Simulated Annealing Method

The configuration of monolayers adjacent to the central cylinder represent-
ing a nucleation line for the La–HII phase transition is described by the
radius of the central cylinder and a set of N angles, ci, i ¼ 1, 2, . . ., N,
describing the bulby closure and the surrounding monolayers (Fig. 16),
which were divided into N sufficiently small parts. The boundary condi-
tions were introduced to reflect connections within the different parts of the
system. Due to symmetry, this unit includes a quarter of the cylinder, half of
the bulby closure and one neighboring monolayer.
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The minimization of the free energy of the system was performed by the
Monte Carlo simulated annealing sampling strategy [53]. The method was
invented by Kirkpatrick et al. [53] as an adaptation of theMetropolis–Hastings
algorithm, which constitutes the Monte Carlo method [54]. The method is
inspired by physical process of annealing in metallurgy, when the heating and
subsequent slow cooling of a material is used for the increase of the crystal size
in the material and thus reduces defects.

By analogy of this effect, each step of the simulated annealing algorithm
moves the current solution to a sufficiently near random solution. The
probability of excepting of a new solution depends on the difference in
the corresponding function values and a global parameter T (temperature),
which is decreasing during the process under a cooling schedule. For high
values of temperature the randomness of the choice is considerable, thus the
solution can jump out from local minima. With decreasing of temperature
the probability for acceptance of a solution corresponding to higher energy
is decreased, hence the solution is smoothed in a low temperature mode.

Within this approach, it is assumed that any local minimum is accessible
from any other minimum after a finite number of random sampling steps
[54]. In contrast to the conventional Metropolis Monte Carlo method, all
values of angles c together with the radius of the central cylinder r were
updated in each step [53]. After each step, the total free energy of the system
was evaluated by the Metropolis criterion [54] and compared with the free
energy of the previously accepted state. To find the global minimum in the
multivariational space, the simulation was started at sufficiently high tem-
perature according to the Metropolis criterion, while according to the
cooling schedule the temperature was decreased after each step until it
reached the zero value.

The initial configuration of the system composed of the contour shape of
the bulby closure was determined by solving the Euler–Lagrange equations,
the radius of the central cylinder was determined by the maximal value of z
coordinate of this bulby closure, and two adjacent flat monolayers sand-
wiching the bulby closure and the cylinder were taken as a first approxima-
tion in the procedure of the energy minimization by the Monte Carlo
simulation annealing method. This choice of the initial configuration con-
siderably increased the speed of the time-consumingMonte Carlo simulated
annealing method.
6.3. Results: Equilibrium Configuration of Nucleation of the
Lamellar to Inverted Hexagonal Phase Transition

Solving the equilibrium configuration of the system with an inverted
cylinder surrounded by two monolayers and two bulby closures yielded
results depicted in Figs. 17 and 18.
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Figure 17 Configuration of the system of two monolayers, a first cylinder of HII phase
and two bulby closures representing a nucleation line in the La–HII transition for
different intrinsic curvature Hm and different stretching moduli of the phospholipid
chains t. We assume that phospholipid molecules are anisotropic corresponding to
Dm¼ jHmj. The free energy per lipid molecule and the radius of the central cylinder are
given for each configuration. Adapted from Ref. [29].
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Figure 18 Nucleation configurations for different values of stretching modulus of
phospholipid tails (t) at transition point from La to HII phase where△f¼ 0. Anisotropic
case (Dm ¼ jHmj). Adapted from Ref. [29].
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In Fig. 17, snapshots of the equilibrium configurations for anisotropic
phospholipids (settingDm ¼ jHmj) and different values of model parameters
are displayed. The top row presents the La phase with values of the free
energy per lipid molecule of the pure La phase. The next two rows show the
equilibrium configuration of the system with the first cylinder of the HII

phase embedded between two monolayers. The energy of these structures is
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described by energy difference Df ¼ fHII
� fLa

, where fHII
is the energy per

lipid molecule in the hexagonal phase and fLa
is the energy per lipid

molecule in the lamellar phase at given values of model constants. From
top to bottom, the stretching modulus of the phospholipids is increased:
t ¼ (0.95 and 9.5) kT nm�2. From left to right the lipid intrinsic mean
curvature jHmj ¼ 0 is increased: jHmj ¼ (0, 0.15, 0.3) nm�1.

It can be seen in Fig. 17 that the inverted hexagonal phase (HII) configu-
ration is energetically more favorable than the pure lamellar La phase at
sufficiently high values of the mean intrinsic curvature jHmj. In the model
increase of the temperature is simulated by increasing of jHmj. For higher
values of the mean intrinsic curvature jHmj, the energy difference Df
decreases, thereby the configuration with the cylinder is favored. This
phenomenon is in accordance with experimental results showing that the
formation of the HII phase is promoted with increasing temperature [28].

It is evident from Fig. 17 that the radius of the cylinder r decreases with
increasing stretching modulus of the phospholipid chains t and increasing
jHmj which is in agreement with the results presented in Fig. 14. Creation
of a cylinder in the lamellar phase becomes less disturbing for adjacent lipid
layers when the radius of the cylinder r is decreased enough.

For high enough values of t there is a negligible effect of Hm on the
equilibrium radius of the central cylinder r because the stretching modulus
t plays a considerable role in the energy balance and also because the
contact energy is much higher than the bending energy. On the other
hand small t means a low contact energy that cannot compete with
the bending energy. Consequently, the radius of the central cylinder
r approaches rm ¼ 1/Hm.

The transition from the La to HII phase in the nucleation model occurs
at the energy difference Df ¼ 0, that is, when the energy of HII phase is
equal to energy of La phase for jHmj ¼ Dm, (Fig. 18). By comparison of
three different configurations of HII phase nucleation corresponding to
different phospholipid chain stiffness, one can see that for low t the La–HII

transition takes place for smaller jHmj and the predicted radius of initial
cylinder does not have a realistic value (r ¼ 3.49 nm), that is, it is much
larger than the experimental values [28, 34]. However, for larger values
of t the calculated r corresponds to experimental values much better.
At jHmj ¼ 0.155 nm�1 the nucleation cylinder radius is 2.47 nm, which
agrees well with data obtained from X-ray experiments [28, 49]. As the
decrease of the free energy with increasing jHmj is more pronounced in
the pure hexagonal phase (Fig. 13) than in the nucleation configuration
(Fig. 18), the values of t around 9.5kT nm�2 would lead to the stabilization
of the HII phase at higher temperatures. For large t (e.g., t¼ 95kT nm�2),
the predicted nucleation transition is again less realistic due to the too small
value of r ¼ 1.49 nm.
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7. Discussion and Conclusions

The stability of the inverted hexagonal phase depends on energy
balance between different contributions to the system free energy, hence
the main problem in theoretical description of the lamellar to inverted
hexagonal phase transition and explanation of the stability of the HII lipid
phase consists in finding the proper expression for the free energy of the
system. Most of contemporary theoretical models of the free energy of the
inverted hexagonal phase have shown that in addition to the bending
energy term, it is necessary to consider also the energy term, which depends
on the dimension of the ‘‘voids’’ in the hexagonal lattice, the so-called
interstitial energy [24, 31]. We followed this assumption and took into
account the interstitial energy which in our model is expressed by the
stretching energy of phospholipid chains.

In our theoretical analysis we did not take into account the dependence
of the chain stretching modulus t on the temperature [55], which is based
on the elasticity of lipid chains. We expect that neglecting the temperature
dependency of t predicts that the slope of the energy dependence of jHmj is
less pronounced (Fig. 13). Another simplification introduced in our theo-
retical model is the assumption of spherical cross sections of lipid tubes in the
HII phase. The nonspherical cross section of lipid tubes would probably
lower the stretching energy of phospholipid chains, but would also contrib-
ute to higher bending of the monolayer. To include the deviations from
sphericity in our computations will be one of our future tasks in theoretical
description of stability of nonplanar lipid phases.

In conclusion, our results indicate that the deviatoric bending can explain
the stability of the HII phase at higher temperatures. However, for the La–HII

transition, tuning of the deviatoric bending energy by the isotropic bending
energy and the interstitial energy is needed. Models based on the isotropic
elasticity described the La–HII phase transition by showing that at a certain
temperature, the free energy of the system is lowered as it converts from the
La phase to the HII phase [56]. However, the energy difference was found to
be lower than 0.1kT [24]. Our results pursue the general conclusions of the
previous models; however, the obtained energy difference becomes much
larger at elevated temperatures if the average orientational ordering of aniso-
tropic lipid molecules on highly curved surfaces of the HII phase is taken into
account (i.e., if anisotropic elasticity of lipid monolayer is considered). This
energy difference is sufficient for the stability of a single cylinder within the
lamellar stack and therefore supports previously suggested nucleation models,
which are based on LDs [28, 34, 57, 58].

In spite of many simplifications introduced in our theoretical descrip-
tion, results of our modeling and simulations are in good agreement with
experimental results [28, 34, 59, 60]. Among others we have shown that
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with increasing absolute values of intrinsic curvatures of lipid molecules
C1m and C2m (which were assumed to increase with increasing tempera-
ture), the La–HII phase transition occurs beyond a certain threshold tem-
perature. Further we could also reproduce realistic structures in good
agreement with experimental results. Our results thus show that deviatoric
bending plays an important role in the stability of the inverted hexagonal
phase and in the La–HII phase transition. It should be stressed at the end that
considering the deviatoric bending of lipid monolayer [15, 21, 29, 45, 46]
does not assume lattice-like packing of anisotropic lipids with fixed orien-
tation and fixed position but just takes into account the possibility of
decrease of the free energy of lipid monolayer (bilayer) due to average
orientations of laterally mobile rotating anisotropic lipids.
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