
Provided for non-commercial research and educational use only. 
Not for reproduction, distribution or commercial use. 

 
This chapter was originally published in the book Advances in Planar Lipid Bilayers 
and Liposomes, Vol. 9, published by Elsevier, and the attached copy is provided by 
Elsevier for the author's benefit and for the benefit of the author's institution, for non-
commercial research and educational use including without limitation use in 
instruction at your institution, sending it to specific colleagues who know you, and 
providing a copy to your institution’s administrator. 
 

 
 
All other uses, reproduction and distribution, including without limitation commercial 
reprints, selling or licensing copies or access, or posting on open internet sites, your 
personal or institution’s website or repository, are prohibited. For exceptions, 
permission may be sought for such use through Elsevier's permissions site at: 

http://www.elsevier.com/locate/permissionusematerial 
 

From: Klemen Bohinc, Jasna Zelko, P.B. Sunil Kumar, Aleš Iglič, and Veronika Kralj-Iglič, 
Attraction of Like-Charged Surfaces Mediated by Spheroidal Nanoparticles with Spatially 
Distributed Electric Charge: Theory and Simulation. In A. Leitmannova Liu and H.T. Tien, 

editors: Advances in Planar Lipid Bilayers and Liposomes, Vol. 9, Burlington:  
Academic Press, 2009, pp. 279-301. 

ISBN: 978-0-12-374822-5 
© Copyright 2009 Elsevier Inc. 

Academic Press. 



Author's personal copyAuthor's personal copy
C H A P T E R T E N
A

IS

1

2

3

4

*

E

dvance

SN 1

Labor
Facul
Labor
Depa

Corre
-mail a
Attraction of Like-Charged

Surfaces Mediated by Spheroidal

Nanoparticles with Spatially

Distributed Electric Charge:

Theory and Simulation

Klemen Bohinc,1,2 Jasna Zelko,3 P.B. Sunil Kumar,4
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Abstract

The interaction between equal, uniformly charged flat surfaces, separated by a

solution of spheroidal nanoparticles was studied theoretically. The nanoparti-

cles were assumed to have spatially distributed electric charge. The nonlocal

Poisson–Boltzmann (PB) theory for the spheroidal nanoparticles, which play the

role of counterions, was developed. In the model the center of the spheroidal

nanoparticle could not approach the charged surfaces closer than the radius of

the nanoparticle. It was shown that for large enough diameters of nanoparticles
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and large enough surface charge densities of membrane surfaces, the two

equally charged surfaces could experience an attractive force due to the spa-

tially distributed charges within the nanoparticles. The results presented in this

chapter may add to a better understanding of the coalescence of negatively

charged membrane surfaces induced by positively charged nanoparticles (e.g.,

proteins) which are proposed to play an important role in the complex vital

processes such as blood clot formation.
1. Introduction

The outer surface of biological membranes is usually negatively
charged [1]. For example, blood involves negatively charged red blood
cells [2, 3]. Also the outer membrane surface of the membrane microvesicles
released from red blood cells, platelets, and lymphocytes, as well as from
apoptotic cells (with negatively charged cardiolipin and phosphatidylserine
in the outer membrane layer) are negatively charged [4–8].

Clinical evidence indicates that microvesicles are prothrombogenic, as they
form catalytic surfaces for reactions of blood clot formation. A mechanism
which could be relevant in microvesiculation is the coalescence of negatively
charged membraneous structures mediated by multivalent ions [9–11].
Possible candidates for such multivalent polyions could be various membrane
proteins, including antibodies [9–12] and also artificial nanoparticles (entering
the body from the environment). Spheroidal multivalent ions (nanoparticles)
may thus play an important role in the formation of blood clots.

The phenomena of ion-mediated attractive interaction between two
equally charged surfaces has been observed previously in many other cases
as well. The first experimental observation of attraction between two highly
negatively charged clays was reported for CaCl2 solution [13, 14]. Attraction
between charged lamellae [15], DNA condensation [16–18], network for-
mation in actin solutions [19], complexation ofDNAwith positively charged
colloidal particles [20], and virus aggregation [21] have also been observed.
However, origins of these attractive interactions are still not fully understood.

Theory of equally charged surfaces separated by a solution containing
dimensionless ions in the mean field approach yields electrostatic repulsion
[22–25]. However, it was indicated recently that large multivalent ions in
solution between two equally charged surfaces can induce at close distances,
also an attractive force between these two surfaces [26, 27]. Monte Carlo
simulations showed the existence of attractive interaction between equally
charged surfaces immersed in a solution composed of multivalent ions in the
limit of high surface charge densities [28–31]. Therefore, different improve-
ments with respect to Poisson–Boltzmann (PB) theory were suggested in
order to explain the observed attraction between like-charged surfaces.
Among others, direct ion–ion interactions were considered as a possible
explanation for attractive interaction within hypernetted chain theory
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[32–35], density functional theories [36–39], and by taking into account
in-plane Gaussian fluctuations [40–42].

New fields of research interest that were opened in past decade offer new
possibilities for the application of modified PB theories, especially in the
study of polyelectrolyte solutions [43, 44] and of protein–membrane inter-
actions [45–48]. In such systems, charge distribution along the polyelectro-
lyte chain or within the protein is essential to explain the attraction between
two like-charged membranes. Bridging mechanism, where polyions are
oriented in such a way that they electrostatically bind together the neigh-
boring equally charged surfaces, was proposed in the case of polyelectrolyte-
induced attraction between two charged surfaces [43, 44, 49]. Electrostatic
interactions may also play a crucial role in interaction of proteins with the
membrane. It was suggested that charge distribution within a protein
influences the orientation of the protein at the membrane surface [50].

The importance of finite ion size [51–54] and charge distribution [55] in
polyions for their solvation and double layer effects has been considered
previously. If spheroidal multivalent nanoparticles have an internal charge
distribution with charges being located at different, well-separated positions
[56], the classical PB description of the electric double layer fails to describe
the experimentally obtained spatial distribution and orientation of the multi-
valent nanoparticles [57]. A generalization of the PB theory of the electric
double layer for the case of multivalent nanoparticles could be made by
taking into account the internal space charge distribution of a single sphe-
roidal multivalent nanoparticle [58]. Theoretical description of such large
multivalent spheroidal nanoparticles in between two planar charged surfaces
that takes into account the internal charge distribution was proposed
recently [56], using a simple three-state model for the orientation of the
multivalent ions in the gradient of the electric field and applying the
methods of statistical physics. It was assumed that the distance between
the electric charges within a single multivalent nanoparticle is small enough
to justify the Taylor series expansion [58] in calculation of the electrostatic
energy of a single spheroidal multivalent nanoparticle in the electric field
gradient [56]. The orientational ordering of the multivalent nanoparticles
near the charged membrane surface was predicted [56]. However, within
this model the internal space charge distribution was taken into account
only in the entropic part of the free energy.

In this work we present a theoretical model with an improved descrip-
tion of the effect of the spatial charge distribution within the spheroidal
nanoparticle on the electric field and the free energy of the system. In our
case the two charges are placed oppositely on a surface of the spherical
nanoparticle; however, the theory presented can be generalized to include
any separation between charges within the spherical nanoparticle. The
distance of closest approach of the spherical nanoparticles to the charged
surface was taken into account [59] while the direct particle–particle hard
core interactions were not taken into account.
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2. Theoretical Model

We consider an aqueous solution containing spheroidal (Fig. 1) mul-
tivalent nanoparticles, which are positively charged and have a diameter a.
In the model the electric charge of each spheroidal nanoparticle is described
by two equal charges e ¼ Ze0, separated by an arbitrary distance l, where Z
is the valency and e0 the elementary charge. The solution is sandwiched
between two large, planar surfaces of area A (Fig. 2), each carrying a
uniform negative surface charge density s. The distance between the two
surfaces is D. For the sake of simplicity we take l ¼ a. The volume of the
spheroidal nanoparticle is given by v0 ¼ 4p=3ð Þ a=2ð Þ3. The electrostatic
field between the two charged surfaces varies only in the direction normal
to the surfaces (x-direction). We assume that there is no electric field on the
other side of each charged plate.

For each spheroidal nanoparticle, the center of the charge distribution
(also its geometric center) is located at x. The two point charges are located
at geometrically opposite points separated by a distance l. When projected
onto the x-axis, their positions are at x þ s and x � s respectively, as shown
in Fig. 2. We describe the spheroidal nanoparticles by the local concentra-
tion of nanoparticles n(x). Furthermore, we refer to one of the charges of
the nanoparticle as the reference charge. The location of the reference
charge of a given spheroidal nanoparticle is specified by the conditional
probability p sjxð Þ, x denoting the location of the center of the nanoparticle.
The probability density p sjxð Þ satisfies the relation
a

l

e

e

Figure 1 Schematic diagram of a large spheroidal multivalent nanoparticle with net
electric charge 2e and average diameter a. In the model the space charge distribution of
the multivalent nanoparticle is described by two effective polyions of charge e located at
different, well-separated positions l � a. The main axis of the nanoparticle coincides
with the line connecting the two polyions.
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Figure 2 Schematic illustration of two like-charged planar cell surfaces of surface
charge density s, interacting in a solution that contains multivalent spheroidal nano-
particles. The coordinate x specifies the center of the spheroidal nanoparticle while the
coordinates x � s and x þ s specify the positions of two charges in a spheroidal
nanoparticles. The distance between the planar surfaces is D.
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1

l

ð l=2
�l=2

p sjxð Þds ¼ 1 ð1Þ

and p sjxð Þ ¼ 0 for any x and jsj > l=2.
The electrostatic free energy of the system F measured per unit area A

and expressed in units of the thermal energy kT (here k is the Boltzmann
constant and T is the absolute temperature) can be expressed as

F

AkT
¼
ð1
�1

dx
C

0
xð Þ2

8plB
þ n xð Þ ln n xð Þv0 þ 1

v0
1� n xð Þv0ð Þ:

"

ln 1� n xð Þv0ð Þ þ n xð Þhp sjxð Þ ln p sjxð Þ þ U xð Þ½ �i
# ð2Þ

where the first term is the electrostatic energy, the second and the third terms
are contributions to the positional entropy including the excluded volume
effect and the fourth term is the orientational entropy. The reduced



284 K. Bohinc et al.

Author's personal copy
electrostatic potential is denoted by C where lB ¼ e20
4pee0kT

is the Bjerrum

length, e is the dielectric constant of the solution and e0 is the permittivity of
the vacuum. The average of an arbitrary function g(s) is defined as

hg sð Þi ¼ 1

l

ð l=2
�l=2

g sð Þds ð3Þ

while the function

U xð Þ ¼ 0;
l

2
� x � D� l

2

1; elsewhere

8<
: ð4Þ

is introduced in order to ensure that the spheroidal nanoparticles are
confined within the region specified by the charged walls.

Equation (2) can be written in the following form:

F

AkT
¼
ð1
�1

dx
C

0
xð Þ2

8plB
þ n xð Þln n xð Þv0 � n xð Þ

"

þ g
1

v0
1� n xð Þv0ð Þln 1� n xð Þv0ð Þ þ n xð Þ

" #

þ n xð Þhp sjxð Þ ln p sjxð Þ þ U xð Þ½ �i
#

ð5Þ

where we introduce parameter g as

g ¼ 0; excluded volume not taken into acount

1; excluded volume taken into acount

�
ð6Þ
The equilibrium state of the system is determined by theminimum of the total
free energy F, subject to the constraints that (1) the orientational probability of
the spheroidal nanoparticles, integrated over all possible projections (Eq. (1)), is

equal to 1 and that (2) the system is electroneutral 2Z
Ð1
�1 n xð Þdx ¼ 2s=e0

� �
.

To solve this variational problem, a functional
Ð1
�1ℱdx is constructed:

Ð1
�1ℱdx ¼ F

AkT
þ
ð1
�1

l xð Þn xð Þ 1

l

ð l=2
�l=2

p sjxð Þds� 1

 !
dx

þ m
Ð1
�1 2Zn xð Þ � 2s

e0D

" #
dx

ð7Þ
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where l(x) and m are the local and global Lagrange multipliers, respectively.
By taking into account Eq. (5), we can rewrite Eq. (7) in the form

ð1
�1

ℱdx¼
ð1
�1

dx
C

0
xð Þ2

8plB
þ n xð Þln n xð Þv0ð Þ

"

� n xð Þ þ g
1

v0
1� n xð Þv0ð Þln 1� n xð Þv0ð Þ þ n xð Þ

" #

þ n xð Þhp sjxð Þ ln p sjxð Þ þU xð Þ½ �i
#

þ
ð1
�1

dx n xð Þl xð Þ hp sjxð Þi � 1½ �

þ m
ð1
�1

2Zn xð Þ � 2s
e0D

" #
dx

ð8Þ

In equilibrium,

d
ð1
�1

ℱdx ¼ 0 ð9Þ

Using expression (8) we can perform the first variation of F as follows:

dℱ ¼ d
1

8plB

ð1
�1

C
02
dx

 !

þ Ð1�1 dx dn xð Þ ln n xð Þv0ð Þ � g ln 1� n xð Þv0ð Þ½ �
þ Ð1�1 dx dn xð Þhp sjxð Þ ln p sjxð Þ þ U xð Þ½ �i
þ Ð1�1 dx dn xð Þ l xð Þ hp sjxð Þi � 1ð Þ þ 2Zmf g
þ Ð1�1 dx hdp sjxð Þn xð Þ ln p sjxð Þ þ 1þ U xð Þ þ l xð Þ½ �i

ð10Þ

We shall first perform the variation of the electrostatic energy (see the first
term in Eq. (10)):

d
1

8plB

ð1
�1

C
02
dx

� �
¼ 1

4plB

ð1
�1

C
0
dC

0
dx ð11Þ
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Using per-partes integration the last term can be transformed intoð1
�1

C
0
dC

0
dx ¼

ð1
�1

ðCdC
0 Þ0dx�

ð1
�1

CdC
00
dx ð12Þ

The first integral on the right side of Eq. (12) can be rewritten asð1
�1

ðCdC
0 Þ0dx ¼

ð1
�1

dðCdC
0 Þ ¼ CdC

0 jD0 ð13Þ

The surfaces at x ¼ 0 and x ¼ D are uniformly charged, the variation of
the first derivative of the potential at both charged surfaces is zero
(dC

0 jx ¼ 0 ¼ 0 and dC
0 jx ¼ D ¼ 0) and the first integral on the right hand

side of Eq. (12) is zero. Thus, Eq. (12) becomesð1
�1

C
0
dC

0
dx ¼ �

ð1
�1

CdC
00
dx ð14Þ

We insert the Poisson equation

C
00
xð Þ ¼ �R xð Þ 4plB

e0
ð15Þ

into Eq. (12) and get
d
1

8plB

ð1
�1

C
02
dx

� �
¼
ð1
�1

C xð Þd R xð Þ
e0

� �
dx ð16Þ

where R(x) is the volume charge density.
Using the above derived relation (16) we can rewrite Eq. (10) as

dℱ ¼ Ð1�1C xð Þd R xð Þ
e0

 !
dx

þ Ð1�1 dx dn xð Þ ln n xð Þv0ð Þ � g ln 1� n xð Þv0ð Þ½ �
þ Ð1�1 dx dn xð Þhp sjxð Þ ln p sjxð Þ þ U xð Þ½ �i
þ Ð1�1 dx dn xð Þfl xð Þ hp sjxð Þi � 1ð Þ þ 2Zmg
þ Ð1�1 dxhdp sjxð Þn xð Þ ln p sjxð Þ þ 1þ U xð Þ þ l xð Þ½ �i

ð17Þ

The volume charge density is determined by both charges of spheroidal
nanoparticle:
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r xð Þ
Ze0

¼ hn x� sð Þp sjx� sð Þ þ n xþ sð Þp sjxþ sð Þi ð18Þ

The first variation of the volume charge density dR xð Þ is

dr xð Þ
Ze0

¼ hdn x� sð Þp sjx� sð Þ þ n x� sð Þdp sjx� sð Þi
þ hdn xþ sð Þp sjxþ sð Þ þ n xþ sð Þdp sjxþ sð Þi

ð19Þ

Inserting Eq. (19) into the first term of variation
Ð1
�1 C xð Þd R xð Þ=e0ð Þdx

we get

Ð1
�1C xð Þd R xð Þ

e0

 !
dx

¼ Ð1�1hC xð ÞZ dn x� sð Þp sjx� sð Þþdn xþ sð Þp sjxþ sð Þ½ �idx

þ Ð1�1hC xð ÞZ n x� sð Þdp sjx� sð Þþn xþ sð Þdp sjxþ sð Þd½ �ix

ð20Þ

By introducing the new variables �x ¼ xþ s and ~x ¼ x� s; Eq. (20) can
be rewritten as

Ð1
�1C xð Þd R xð Þ

e0

 !
dx

¼ Ð1�1hdn xð Þp sjxð Þ ZC xþ sð Þ þ ZC x� sð Þ½ �idx
þ Ð1�1hn xð Þdp sjxð Þ ZC xþ sð Þ þ ZC x� sð Þ½ �idx

ð21Þ

If we insert Eq. (21) into Eq. (17) we get

dF ¼ Ð1�1hdn xð Þp sjxð Þ ZC xþ sð Þ þ ZC x� sð Þ½ �idx
þ Ð1�1hn xð Þdp sjxð Þ ZC xþ sð Þ þ ZC x� sð Þ½ �idx
þ Ð1�1 dxdn xð Þ ln n xð Þv0 � g ln 1� n xð Þv0ð Þ½ �
þ Ð1�1 dxdn xð Þhp sjxð Þ ln p sjxð Þ þ U xð Þ½ �i
þ Ð1�1 dxdn xð Þ l xð Þ hp sjxð Þi � 1ð Þ þ 2Zmf g
þ Ð1�1 dxhdp sjxð Þn xð Þ ln p sjxð Þ þ 1þ U xð Þ þ l xð Þ½ �i

ð22Þ
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Equation (9) has to be fulfilled for variations dp sjxð Þ and dn xð Þ. This means
that the expressions multiplied by dp sjxð Þ and dn xð Þ in Eq. (22) have to be
zero. First, we consider the term multiplied by dp sjxð Þ:

ln p sjxð Þ þ 1þ U xð Þ þ l xð Þ þ ZC xþ sð Þ þ ZC x� sð Þ ¼ 0 ð23Þ

from which the conditional probability density can be calculated

p sjxð Þ ¼ exp �ZC xþ sð Þ � ZC x� sð Þ � 1� U xð Þ � l xð Þ½ � ð24Þ

The normalization condition (1) determines the local Lagrange parameter,
and Eq. (24) becomes

p sjxð Þ ¼ e�ZC x þ sð Þ�ZC x � sð Þ

he�ZC x þ sð Þ�ZC x � sð Þi ð25Þ

We also consider the terms multiplied by dn xð Þ:

ln n xð Þv0 � g ln 1� n xð Þv0ð Þ
þhp sjxð Þ ZC xþ sð Þ þ ZC x� sð Þ½ �i
þ hp sjxð Þ ln p sjxð Þ þ U xð Þ½ �i þ 2Zm ¼ 0

ð26Þ
2.1. Including the Excluded Volume Effect

In the following we consider the situation in which the excluded volume of
the spheroidal nanoparticles is taken into account. Therefore, g ¼ 1.

By inserting Eq. (25) into Eq. (26) and setting g ¼ 1, we obtain the
equation for the concentration:

n xð Þ ¼ q xð Þe�U xð Þ�2Zm

v0 1þ q xð Þe�U xð Þ�2Zm½ � ð27Þ

where we defined

q xð Þ ¼ he�ZC x þ sð Þ�ZC x � sð Þi ð28Þ
The ionic distribution function can be obtained by inserting Eqs. (27) and
(25) into equation n x; sð Þ ¼ n xð Þp sjxð Þ:

n x; sð Þ ¼ e�ZC x þ sð Þ�ZC x � sð Þ�U xð Þ�2Zm

v0 1þ q xð Þe�U xð Þ�2Zm½ � ð29Þ
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The volume charge density (18) can then be rewritten in the form

r xð Þ
Ze0

¼ hn x� s; sð Þ þ n xþ s; sð Þi ð30Þ

where we took into account the definition of the ion distribution function.
By inserting Eq. (29) into Eq. (30) we get

r xð Þ ¼ Ze0

v0

�
e�ZC xð Þ�ZC x � 2sð Þ�U x � sð Þ�2Zm

1þ q x� sð Þe�U x � sð Þ�2Zm

þ e�ZC xð Þ�ZC x þ 2sð Þ�U x þ sð Þ�2Zm

1þ q xþ sð Þe�U x þ sð Þ�2Zm

� ð31Þ

In the first term of Eq. (31) we replace �s with s and add both terms

r xð Þ ¼ 2Ze0

v0

�
e�ZC xð Þ�ZC x þ 2sð Þ�U x þ sð Þ�2Zm

1þ q xþ sð Þe�U x þ sð Þ�2Zm

�
ð32Þ

By taking into account Eq. (28), Eq. (32) can be rewritten as

r xð Þ ¼ 2Ze0

v0

�
e�ZC xð Þ�ZC x þ 2sð Þ�U xþ sð Þ�2Zm

1þhe�ZC x þ �s þ sð Þ�ZC x ��s þ sð Þie�U x þ sð Þ�2Zm

�
ð33Þ

The outer averaging is performed over s while the inner averaging is
performed over �s.

Using the expression (33) for volume charge density R xð Þ in the Poisson
Eq. (15) yields the integro-differential equation for the reduced electrostatic
potential in the form

C
00
xð Þ ¼ � 8plBZ

v0

�
e�ZC xð Þ�ZC x þ 2sð Þ�U x þ sð Þ�2Zm

1þ he�ZC x þ �s þ sð Þ�ZC x� �s þ sð Þie�U x þ sð Þ�2Zm

�
ð34Þ

The boundary conditions for this integro-differential equation are given
at the charged surfaces:

C
0
x ¼ 0ð Þ ¼ � 4pslB

e0
; C

0
x ¼ Dð Þ ¼ 4pslB

e0
ð35Þ
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2.2. Excluding the Excluded Volume Effect

Here we consider the situation in which the excluded volume effect of
spheroidal nanoparticles is not taken into account. Therefore, g ¼ 0.

By inserting Eq. (25) into Eq. (26) and setting g ¼ 0, we obtain the
equation for the concentration:

n xð Þ ¼ q xð Þ
v0

e�U xð Þ � 2Zm ð36Þ

where q(x) is given by Eq. (28). The ion distribution function can be
obtained by inserting Eqs. (36) and (25) into equation n x; sð Þ ¼ n xð Þp sjxð Þ:

n x; sð Þ ¼ 1

v0
e�ZC x þ sð Þ�ZC x � sð Þ�U xð Þ�2Zm ð37Þ
Again, the volume charge density (18) can then be rewritten in the form

r xð Þ
Ze0

¼ hn x� s; sð Þ þ n xþ s; sð Þi ð38Þ

where we took into account the definition of the ion distribution function.
Inserting Eq. (37) into Eq. (38) we get

r xð Þ ¼ Ze0

v0
he�ZC xð Þ�ZC x � 2sð Þ�U x � sð Þ�2Zm

þ e�ZC xð Þ�ZC x þ 2sð Þ�U x þ sð Þ�2Zmi
ð39Þ

In the first term of Eq. (39) we replace �s with s and add both terms:

r xð Þ ¼ 2Ze0

v0
he�ZC xð Þ�ZC x þ 2sð Þ�U x þ sð Þ�2Zmi ð40Þ

The averaging is performed over s.
Using the expression (40) for volume charge density R xð Þ in Poisson

Eq. (15) yields the integro-differential equation for the reduced electrostatic
potential in the form

C
00
xð Þ ¼ � 8plBZ

v0
he�ZC xð Þ�ZC x þ 2sð Þ�U x þ sð Þ�2Zmi ð41Þ

The boundary conditions for this integro-differential equation are given
at the charged surfaces by Eq. (35).
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2.3. Numerical Methods

The integro-differential Eq. (41) was solved numerically. The boundary
value problem was restated as a fixed-point equation C ¼ G Cð Þ, where
G Cð Þ is the solution � of the ordinary differential boundary value problem:

�
00
xð Þ ¼ �8plB

1

v0
Ze�Z� xð Þ�2Zm

� 1

2l

ðmin l; D�x½ �

max �l; l�x½ �
ds exp �ZC xþ sð Þð Þ

ð42Þ

with boundary conditions

�
0
x ¼ 0ð Þ ¼ � se

ekT
ð43Þ

�
0
x ¼ Dð Þ ¼ se

ekT
ð44Þ

The domain [0, D] was represented by a mesh of N Chebyshev nodes,
the function C by an N-dimensional vector CN of values of C at the mesh
nodes, and the fixed-point equation was discretized into a finite dimensional
algebraic equation CN ¼ pN G pN CNð Þ� �	 


, where pN CNð Þ is the inter-
polating polynom through the values of CN at the mesh nodes and pN �ð Þ
is the N-dimensional vector representing the values of the function � at
the mesh nodes. The discretized fixed-point equation was rewritten as
G CN½ � ¼ CN � pN G pN CNð Þ� �	 
 ¼ 0 and then solved by ‘‘fsolve’’
MATLAB function (available in the optimization toolbox), which finds
solutions of nonlinear algebraic equations by a least-squares method. The
function ‘‘fsolve’’ requires the solution of the above-defined second-order
ordinary boundary value problem which was restated as a system of first-
order equations and solved by the ‘‘bvp4c’’ MATLAB function by colloca-
tion. The integral in the second-order ordinary boundary value problem
was computed by the ‘‘quad’’ MATLAB function.
2.4. Monte Carlo Simulation

In the simulation, the standard Monte Carlo Metropolis algorithm [60] with
Lekner periodic boundary conditions [61] in the directions parallel to the
charged walls was used. A system of 100–200 spheres confined between two
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impenetrable charged surfaces was considered. Translational and rotational
moves were taken into account. To make contact with the theory, the hard
core interaction between particles and the walls was taken into account by
means of the distance of the closest approach. The influence of the direct
hard core interaction between spheres on the charge density distribution
was also calculated for two cases (Figs. 4 and 5).
3. Results

Electrostatic potentialC, volume charge density r, orientational order
parameter S, and free energy F of the system are calculated for different
values of model parameters: surface charge density s, size of the spherical
particles which corresponds to the distance between both charges l and
distance between the charged surfaces D. The minimal distance D we can
achieve is equal to the size of the particles l [when density of the particles
(surface charge density) is not too high]. We keep constant valency of the
charges Z ¼ 1, which are positioned on the surface of the sphere (l ¼ a).

Electrostatic potential between the charged surfaces is obtained for three
different particle sizes at a distance between the surfaces D ¼ 20 nm, which
is much larger than the diameter of the particles l (Fig. 3A). We observe that
the electrostatic potential monotonously decreases with increasing distance
from the left charged surfaces and reaches its minimal value in the midplane.
The slope of the electrostatic potential changes essentially at the distance
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Figure 3 (A) Electrostatic potentialC and (B) volume charge density r as functions of
the distance from the left charged surface x for three different diameters of the
spheroidal nanoparticles. The model parameter is |s| ¼ 0.033 As/m2.
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x ffi l from the charged surface for all values of l. In Fig. 3B we present the
volume charge density distribution between both surfaces.

We can see one peak in the volume charge density near each surface for
small particles (l¼ 0.5 nm). If we increase l, an additional minimum appears
at x � l=2 (see full line in Fig. 3B). The reason for the existence of the
additional minimum is that the probability to find nanoparticles with the
center at x ¼ l/2 which are oriented parallel to the surfaces decreases with
increasing dimension of the nanoparticles.

It can be seen in Fig. 3 that for small particles in the limit of vanishing l,
the electrostatic potential c(x) as well as charge density distribution r(x)
converge towards the corresponding potential and concentration obtained
by standard PB theory for point-like particles.

Although in the theory direct particle–particle interactions are not
explicitly taken into account (since the theory is essentially the mean field
approach), comparison of calculated volume charge density distribution
with corresponding Monte Carlo simulations shows satisfactory agreement
(Figs. 4 and 5). By using Monte Carlo simulations, we also checked the
influence of the particle–particle hard core interactions which are not taken
into account in the theoretical model. It can be seen in Fig. 4 that for
distance D ¼ 2.5 nm there is practically no difference in volume charge
density profile between the predictions of theoretical model and Monte
Carlo simulations. This ceases to be true when the distance between the
surfaces is increased to D ¼ 4 nm at the same surface charge density
|s| ¼ 0.033 As/m2 and the same size of the particles l ¼ 2 nm (Fig. 5).
Taking into account the particle–particle hard core interactions in MC
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Figure 4 Influence of the hard core interaction between the spherical particles on the
volume charge density r(x) calculated for surface charge density |s| ¼ 0.033 As/m2

and distance between the charged surfaces: D ¼ 2.5 nm (squares: MC simulation with
hard core interaction; circles: MC simulation without hard core interaction; solid line:
theoretical prediction).
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Figure 5 Influence of the hard core interaction between the spherical particles on the
volume charge density r(x) calculated for surface charge density |s| ¼ 0.033 As/m2

and distance between the charged surfaces: D ¼ 4 nm (squares: MC simulation with
hard core interaction; circles: MC simulation without hard core interaction; solid line:
theoretical prediction).
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simulations, two peaks in r(x) appear for D ¼ 4 nm (Fig. 5), which means
that the orientation of the particles is slightly stronger if the hard core
interactions are taken into account. Therefore, the effects predicted by the
theory are expected to be even more expressed because of the hard core
interactions.

Figure 6 shows the average order parameter S ¼ h 3cos2#� 1ð Þ=2i as a
function of the distance between the charged surfaces D. The angle #
describes the angle between the line connecting both charges of the nano-
particle (Fig. 1) and the x-axis. The dependence of S on the distance D
exhibits a maximum atD slightly larger than the size of the particles l, then it
falls down with increasing D to nearly fixed value and practically remains
the same for any larger distance D. Monte Carlo results agree well with
theoretical predictions, especially at smaller distances. For larger values of
the surface charge density s, the dependency S(D) is shifted up, while it is
decreased for smaller values of s [26]. Figure 7 shows the order parameter S
in dependence on the distance of the center of the spherical nanoparticles
from the charged surface (xc) for different values of surface charge density s
and the distance between the surfaces D ¼ 2.5 nm. The order parameter S
increases with increasing surface charge density |s| and exhibits two maxima
near the charged surfaces (especially for higher surface charge densities), which
means that the ordering near the charged surfaces is stronger than far from the
surfaces.

The orientational ordering effect which we already observed in the
volume charge density distribution and in the spatial dependency of the
order parameter is also reflected in the free energy calculations. We consider



1 1.1 1.2 1.3 1.4 1.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xc  [nm]

S

(A)

(B)

(C)

Figure 7 The order parameter S of spherical counterions as a function of the average
position of their centers xc for the distance between the charged walls D ¼ 2.5 nm
and diameter of ions 2 nm. The surface charge densities are (A) |s| ¼ 0.033 As/m2,
(B) |s| ¼ 0.1 As/m2, and (C) |s| ¼ 0.4 As/m2.

2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D  [nm]

S

Figure 6 The average order parameter S ¼ h(3cos2# � 1)/2i, where # is the angle
between the main axis of nanoparticles and the x-axis. In dependence on the distance
between the charged surfaces D for l ¼ 2 nm, |s| ¼ 0.07 As/m2.

Attraction of Like-Charged Surfaces 295

Author's personal copy



2.5 6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

986 743

2

1.5

1

0.5

D [nm]

A B C

D [nm] D [nm]

0

23210
−1.8

−1.6

−1.4

−1.2

F
/A

kT
 [1

/n
m

2 ]

−1

−0.8

−0.6

−0.4

Figure 8 Electrostatic free energy F, measured per unit area of the charged surface A
and per thermal energy kT as a function of the distance between two equally charged
platesD for two different surface charge densities (solid lines: |s|¼ 0.1 As/m2, dashed
lines: |s| ¼ 0.033 As/m2). The diameters of the spheres are (A) l ¼ 0.5 nm, (B) and
l ¼ 2 nm, and (C) l ¼ 6 nm.

296 K. Bohinc et al.

Author's personal copy
the interaction between two like-charged planar surfaces as a function of the
distanceD between them. The electrostatic free energy as a function of D is
shown in Fig. 8 for two surface charge densities and for three sizes of the
particles: l¼ 6 nm, l¼ 2 nm and l¼ 0.5 nm. It can be seen in Fig. 8A and B
that for small surface charge density |s| ¼ 0.033 As/m2, for the size of the
particles l ¼ 0.5 nm and l ¼ 2 nm, the interaction between charged surfaces
is repulsive, meanwhile for very large particles (l ¼ 6 nm), the interaction
also becomes attractive for small surface charge density swith the minimum
of the free energy at the value of D slightly larger than the size of the
particles. On the other hand, the interaction between the like-charged
surfaces is attractive for large surface charge densities (e.g., |s| ¼ 0.1
As/m2) and large enough diameter of the nanoparticle (l ¼ 6 nm or l ¼
2 nm). In this case the repulsive behavior is observed only when the size of
particles decreases below a certain value and approaches to the limit of point
particles (see Fig. 8A). When the attraction between like-charged surfaces is
predicted, the minima in the free energy occur at distances D close to the
size of the particles l. Based on presented results it can be therefore
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concluded that the particle size plays a decisive role in the free energy
dependency on the distance D and can revert the system from repulsive to
attractive regime. As we have shown before, the orientational order param-
eter of the particles increases with decreasing distance between the surfaces
D and with increasing surface charge density |s|, indicating that orienta-
tional ordering of the particles near the surfaces mediates attractive interac-
tion between the two like-charged surfaces.
4. Concluding Remarks

We studied the interactions between equally charged planar surfaces in
a solution containing large multivalent spheroidal nanoparticles, that is,
counterions with two charges placed diametrically on the surface of the
nanoparticle. The distance of closest approach of the center of spherical
nanoparticles to the charged surfaces was taken into account as the boundary
condition for distribution of nanoparticles. Particle–particle hard core inter-
actions were not taken into account in presented theoretical predictions,
which according to our opinion leads to underestimation of the predicted
attractive force. Although ion–ion interactions are not taken into account
within the mean field approach, the comparison of the predicted volume
charge density distribution with the corresponding results of the Monte
Carlo simulations shows a good agreement, meaning that direct interactions
do not play a major role in this case. The internal charge distribution with
spatially separated charges within a single nanoparticle is reflected in intraio-
nic correlations. Within the presented theoretical model, the expression for
the free energy of the system contains in addition to usual electrostatic and
entropic contribution to the free energy also the term due to orientational
ordering of nanoparticles which is in our system the main reason for the
predicted attractive interaction between the like-charged surfaces [27].

For large enough diameters of the multivalent spheroidal nanoparticles,
the attraction between the equally charged surfaces takes place even at small
surface charge densities. Attraction occurs at smaller sizes of the particles if
the surface charge density of charged surfaces is large enough, which means
that either the surface charge density or the size of the particles has to be
large to yield attraction between like-charged surfaces. In the limit of the
point-like particles, the presented theory reduces to PB theory where
attraction between equally charged surfaces cannot be obtained.

The fact that the distance between the charged surfaces with minimal
free energy is close to the diameter of the nanoparticles (Fig. 8), indicates
that the bridging mechanism plays an important role in the predicted
attractive force between like-charged surfaces [49, 62]. The calculated
orientational order parameter (Fig. 6) shows that the most probable
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orientation of spheroidal nanoparticles coincides with the orientation of the
particle’s main axis (connecting the two charges) in perpendicular direction
to the charged planar surfaces. The two point charges of the nanoparticle
(Fig. 1) energetically prefer to be in close vicinity of both charged surfaces,
so they connect them as a bridge which is most efficient when the distance
between the charged surfaces becomes comparable to the distance between
the two charges of the nanoparticle.

Our results could be used to explain the behavior of more complicated
systems such as large spherical membrane surfaces immersed in a solution
composed of complex nanoparticles with spatially distributed charges.

In biological systems, a relevant system is composed of negatively
charged membranes in the solution containing large multivalent ions, such
as in blood where blood cells and derived membranous vesicular structures
are immersed in plasma. According to our results, proteins with dimeric
distribution of localized positive charge (such as some antibodies) can
mediate attractive interaction between negatively charged membranous
structures. Indeed, it has been observed that anticardiolipin antibodies
induce the coalescence of negatively charged phospholipid vesicles.

Mediated interaction between like-charged membranes may have an
important impact on the process of microvesiculation of the cell membrane.
Microvesicles are formed in the final stage of the process of membrane
budding, that is, when the bud is pinched off the mother membrane to
become a free microvesicle. While narrowing of the neck connecting the
bud and the mother membrane, the membranes of the bud and of the
mother membrane are in close proximity and are subject to the short-
ranged interaction mediated by the plasma proteins. Proteins with appro-
priate distribution of charge act as mediators of the attractive interaction and
cause adhesion of the bud to the mother membrane, thereby preventing the
bud to become free microvesicle. Since microvesicles are prothrombogenic,
the mediating effect of certain plasma proteins can be interpreted as an
anticoagulant effect of plasma proteins. The results presented in this work
may therefore add to a better understanding of the mechanisms that are
important for the formation of blood clots.
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