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It has been shown recently by Kos et al. [Phys. Plasmas 25, 043509 (2018)] that the
common plasma-sheath boundary is characterized by three well defined characteris-
tic points, namely the plasma edge (PE), the sheath edge (SE) and the sonic point.
Moreover, it has been shown that the sheath profiles, when properly normalized at
the SE, as well as the potential drop in the plasma–sheath transition region (PST),
(region between between PE and SE) in collision-free (CF) discharges are rather inde-
pendent of discharge parameters, such as the plasma source profile, ion temperature
and plasma density, providing that the sheath thickness is kept well bellow the plasma
length. While these findings were obtained by theoretical means under idealized dis-
charge conditions, the question arises whether and to which extent they are relevant
under more complex physical scenarios. As a first step toward answering this ques-
tion the CF discharge with warm ions is examined in this work via kinetic simulation
method in which some of the model assumptions, such as independence of time and
the Boltzmann distribution of electrons can hardly be ensured. Special attention is
payed to effects of ion creation inside the sheath. It is found that only with consid-
erably increased sheath thickness the sonic point always shifts from SE towards the
wall. Whether the absolute value of ion directional velocity at the sonic point will
increase or decrease depends on the ion temperature and the source strength inside
the sheath. In addition preliminary comparison of results obtained under CF assump-
tion with the representative ones obtained with strongly enhanced Coulomb collisions
(CC), indicate the relevancy of hypothesis that the VDF of B&J can be considered as
a universal one in future reliable kinetic modeling and solving the plasma boundary
and sheath problem in both collisional and collision-free plasmas. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5044664

I. INTRODUCTION

Ion velocity distribution functions (VDFs), which are characterized by well defined moments and
have second moment comparable to the thermal pressure of electrons or even considerably larger, are
of a particular interest in laboratory, fusion and space plasmas. In the scrape-off-layer (SOL) plasmas
of Tokamak fusion devices [see, e.g., Refs. 1 and 2) such ion VDFs originate from supposedly
Maxwellian ions which penetrate from the core plasma into SOL across the last closed magnetic flux
surface (LCFS) during disruptive events, such as edge localized modes (ELMs), see e.g., Refs. 2 and 3].

aElectronic mail: leon.kos@lecad.fs.uni-lj.si

2158-3226/2018/8(10)/105311/23 8, 105311-1 © Author(s) 2018

 

 

 

 

 

 

https://doi.org/10.1063/1.5044664
https://doi.org/10.1063/1.5044664
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5044664
mailto:leon.kos@lecad.fs.uni-lj.si
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5044664&domain=pdf&date_stamp=2018-10-09


105311-2 Kos et al. AIP Advances 8, 105311 (2018)

Within the SOL, where the magnetic flux tubes are usually terminated by electrically grounded
electrodes, (i.e., limiters or divertors) a self-consistent electric field establishes in both (upstream and
downstream) directions aligned with the magnetic field lines (so-called parallel directions). Direction
of electric field is towards the terminating surfaces. Electric field has the largest value in the sheath,
which is formed between the electrode and the quasi-neutral plasma. This electric field repels electrons
away from the boundary electrodes. While even in collision-free (CF) plasmas, where the mean free
path for binary processes is much longer than the distance between the plates, the bulk electrons can
be modeled as Maxwellian, the motion of ions coming from perpendicular directions into the SOL-
region is determined by their initial velocities, by the SOL electric field and, especially by the losses
in parallel directions. Because of that in a steady-state the ion VDF strongly deviates from the initial
distribution function, which is believed to be close to Maxwellian. For investigating plasma properties
it is often convenient to define2 the temperature and related quantities, such as pressure, ion-sound
velocity, heat, energy and viscosity fluxes in terms of fluid quantities, i.e., in analogy to systems
with VDFs in thermodynamic equilibrium. With such a definition different ion VDFs that have equal
“temperatures” (hereinafter without quotation) can have different direct or feedback effects to plasma
parameters, sheath properties and the plasma surface interactions at both microscopic and macroscopic
levels. However, it is convenient to study the significance of such possible effects related to particular
VDFs with the increased complexity of their shapes, starting from elementary ones, such as mono-
energetic beams and (three dimensional in 3-space) velocity-shells, water-bag, kappa and Maxwellian
distributions (see e.g., Refs. 4–6), and their combinations, which can be expressed analytically or in
a simple numerical form. For example a mono-energetic ion beam (released from e.g., a purposely
created local fireball7) around a positive electrode in so-called large-volume plasmas with multi-pole
magnetic surface confinement, and accelerated by a strong double layer, after being reflected many
times at the magnetized surface back to the main chamber, can establish a mono-energetic three-
dimensional velocity distribution function. In magnetic electrostatic plasma confinement (MEPC)
devices8 ions with high temperatures, comparable to electron temperatures are produced, while in
low pressure double plasma devices, even without surface confinement (e.g., in experiments where
they originate primarily from a high potential plasma9) the ion temperature much higher than that of
electrons can be realized.

However, in modeling the interaction of ions with a solid material (e.g., a diagnostic probe,
electrode or a part of the wall) the parallel and perpendicular part of velocity distribution will both
be characterized by the whole spectrum of velocities affecting the surface structure similarly as a
three dimensional Maxwellian VDF in both parallel and perpendicular direction with respect to the
flow direction. Furthermore, regarding the sheath formation, e.g., the critical (Bohm) velocity, only
component of the VDF parallel to the flow and the corresponding parallel ion temperature play a
role, while perpendicular components, certainly, enter for calculating higher moments, such as heat
flux. For bounded plasmas confined with e.g., permanent magnets distributed over the chamber-wall
surface such mono-energetic (three-dimensional) “velocity in shell” distribution function can be a
perfect source for warm plasmas. However modeling the ion flow to the wall in collision-free plasmas
must be done with the source VDF decomposed into the parallel and perpendicular part with respect to
the flow direction, i.e., with the one-dimensional water-bag (parallel and perpendicular) components
(see e.g., Ref. 4), each having its own temperature.

By keeping in mind above considerations, it is clear that in one-dimensional collision-free plasma
models and kinetic simulations the actual ion VDF will deviate from the source VDF only in the
flow direction. For each source VDF a different and unique ion-VDF is expected to be found, such
that the complete plasma and sheath equation is satisfied everywhere. To our knowledge solving this
problem with the water-bag source VDF has been just tackled in the past in Ref. 10, while most
efforts on solving collision-free discharges with warm ions were done with a Maxwellian source11–20

by assuming its strength to be either proportional to the electron density or independent of position
(flat ion source). In this context it is important to mention that in Ref. 21 an artificial source has been
constructed with intention to obtain Maxwellian ion VDF in the plasma center, resulting in the fluid
quantities calculated at the plasma boundary which are not far from those obtained in works cited
above.2 On the other hand, in Ref. 22 it has been found that the fluid quantities at the plasma boundary,
obtained with the cold ion source (Maxwellian with zero temperature, i.e., Dirac δ-function) in the
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famous CF Tonks-Langmuir23 model and collision dominated charge exchange (CX) model also
yield similar results, in spite of the fact that ion VDFs from the respective models exhibit none
apparent similarities that might be identified. Above findings give hope that the ion VDF emerging
from the original Bissel and Johnson (B&J) model11 with a Maxwellian source, might serve as a
reference in all relevant discharges with warm ion sources, yielding the moments, i.e., fluid quantities
of a “universal” relevance which are, with a high degree of confidentiality independent of the source
VDF.

However, the original B&J model implies intrinsic employment of mathematical two-scale
approach24 constrained to only one free/external parameter of the problem, i.e., to the ion-source
temperature Tn, with the Debye length disregarded (λD = 0) and, moreover, numerical solution has
been obtained for a few temperatures only, with the particular ion source profile si proportional to
electron (Boltzmann distributed) density ne (si ∼ ne). In this context it should be noted at least that the
vanishing Debye length implies infinite electric field at the plasma edge, i.e., infinitely thin charged
sheath (separating the neutral plasma from equally charged terminating planar surfaces) and, even
worse, infinitely high plasma density - apparently contradicts the basic assumption of the model,
i.e., about negligible cross sections for particle-particle interactions in a collision-free plasma. On
the other hand collision-free plasmas (with very long mean-free paths for collisions) under realistic
conditions, e.g., in laboratory and numerical experiments/simulations are characterized by intrinsi-
cally non-vanishing and/or externally variable free parameters, such as particle temperatures, density
and source (particle production) profiles, as well as by spontaneously establishing ones, such as
non-Maxwellian (e.g., truncated) electrons in vicinity of boundaries and time-dependent collective
processes.

For above reasons a generalized B&J theoretical model, which takes into account many theoret-
ically/computationally feasible free parameters like e.g., the temperatures, densities, source profiles,
etc., such as examined in a series of investigations mentioned above11–20,25 must be employed, how-
ever, in a manner such that the explicit functional dependencies on relevant plasma quantities on these
parameters can be written down. Once such functional dependencies are established, one can decide
which of the above mentioned parameters is relevant for a particular physical scenario. Unfortunately,
as emerges from almost one century long history of investigations of the T&L model (being just a
particular, analytically manageable case of the B&J model) even such an apparently trivial discharge
still requires considerable efforts for the problem to be closed in its basic aspects, i.e., concerning the
most conceivable criterion for identifying the common plasma-sheath boundary and the right physical
quantity for properly characterizing it in realistic plasmas, which are characterized by a finite Debye
length and a non-negligible ion-source within the sheath. The B&J model with a non-vanishing ion-
source temperature is mathematically for an order of magnitude more complex than the T&L one,
and for the next order of magnitude more demanding from point of view of parametric dependence
of a solution, i.e., a quantity of interest as a function of the ion-source temperature. In present work
we update the results of our previous investigations reported in Refs. 14, 16–20, and 25, however,
here in both tabular and semi-analytic forms accompanied by new representative graphical results,
which are obtained for previously unavailable combinations of parameters, primarily those concern-
ing presence of both weak and strong ion source. According to Ref. 20 the main quantities of interest
in identifying and characterizing the plasma and sheath edges and finding the correct sonic point,
are the moments of ion VDF and the electrostatic pressure and their pseudo-gradients (derivatives
over potential) as functions of potential, rather than as functions of position. The basic advantage of
this approach is employment of the product of electric field and the Debye length, which turns out
to be finite even in two-scale approach, i.e., at points of singularity of electric field alone, while its
profile as well as profiles of its pseudo gradients in both plasma and sheath region turn out to be rather
independent of the ion-source temperature and the Debye length, providing that the discharge length
is properly normalized and the sheath thickness is kept well bellow the plasma length. The particular
advantage of this approach is a new natural definition of the plasma and sheath edges. Namely, it
is found that common plasma-sheath boundary is characterized by three well defined characteristic
points, named the plasma edge (PE), the sheath edge (SE) and the sonic point, the last one formulated
in terms of the differential ion polytropic coefficient function (DPCF)22 in the form of unified Bohm
criterion. A remarkable revealing should be pointed out: starting from SE in the wall direction the
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sheath profiles, as well as the potential drop within the plasma–sheath transition (PST), i.e., between
PE and SE, appear quite insensitive in a wide range of above mentioned parameters for both types of
ion sources considered in this work. The first one is the so-called exponential ion source, where the
source strength is exponential function of potential. This means that it is proportional to the electron
density. The second is the constant ion source, where the source strength is a given constant. In the
second case ions are created also within the sheath.

The location of the sonic-point and corresponding ion-sound velocity, in our generalized B&J
model however, appears to be dependent on all the three free parameters of interest, i.e., the Debye
length, source temperature and the ion source profile. The ion source profile has been modeled as
proportional to powers of the electron density (∼ nβe ), with β ≥ 0. The unified Bohm criterion has
been found based on recent theory of the intermediate plasma-sheath solution for warm-ion plasmas
from Ref. 19. In this work numerical results have been presented only for the exponential source
(β = 1), while the case with other profiles, such as constant ionization rate (β = 0) has been rather
unattended.

As the next step towards resolving possible effects of ion-creation inside the sheath to the sonic
point location and the sheath profile the generalized B&J discharge is further examined here via kinetic
particle-in-cell simulations in which some of the assumptions of the model, such as independence of
time and the Boltzmann distribution of electrons can hardly be ensured. In addition it turns out that
the essential features and quantities (e.g., related to derivatives of the moments of the ion distribution
function and the field-pressure) from theoretical model can be reproduced by kinetic simulations
with even better resolution than the resolution, which can be achieved by numerical solutions of the
theoretical model.

Besides above mentioned updated theoretical considerations and results and new important quasi-
analytic expressions, it is found in this work that only at considerably increased sheath thickness the
sonic point shifts from SE towards the wall. Absolute value of the ion directional velocity at the
sonic point can either decrease or increase, depending on the ion temperature and the source strength
inside the sheath. Physical reasons for this are discussed in detail. In addition, it turns out that
simulated profiles and derivatives do not indicate any special role of deviation of electron VDF from
Maxwellian ones. Maxwellian electron VDFs are traditionally employed in theoretical models, which
is mathematically convenient but sometimes unrealistic.

The paper is organized as follows. In Section II A the theoretical model from Ref. 20 is again
briefly presented and updated with new theoretical considerations and numerical data, especially
those concerning enhanced ion-source in the sheath region. In particular the definitions of plasma
edge (PE), sheath edge (SE) and sonic point are re-stated again, however with updated notation
and from updated points of view. In Section II B particle in cell (PIC) simulations are described. In
Section III theoretical and PIC simulation results are systematically compared under various discharge
parameters, with special attention payed to possible effects of ion creation within the sheath, as well
as to hypothesis about possible applicability of present model to plasma boundary problems under
collision dominated discharge scenarios as well. Summary and discussion of results is given in
Section IV. The relevant numerical values of plasma parameters not shown previously in literature
are obtained and given in the Table I in the Appendix.

II. THE METHOD

A. Theoretical approach and results

The basic equations of the model are the one-dimensional time-independent kinetic equations
for the ion and electron velocity distribution functions (VDFs) f i ,e(x, 3) and the Poisson equation:

3
∂fi
∂x
−

e
mi

dΦ(x)
dx

∂fi
∂3
= S(32,Φ) , 3

∂fe
∂x

+
e

me

dΦ(x)
dx

∂fe
∂3
= 0 ,

d2Φ

dx2
=

e
ε0

∫ [
fe(3) − fi(3)

]
d3 ≡

e
ε0

(ni − ne) ,
(1)
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to be solved under symmetric boundary conditions between two perfectly absorbing co-planar plates
characterized by the electric potentialΦ(±L) ≡ΦW and located at positions x = ±L, under assumption
that starting from the symmetry plane (x = 0, Φ = 0) the electrostatic potential Φ(x) monotonically
decreases in directions x ≷ 0.

Both normalized and unnormalized quantities will be used with the same notation of symbols
(with rare exceptions), so that, e.g., the ion and electron densities ni ,e = ∫ f i ,ed3 and quantities related
to higher velocity moments

〈
3m

i,e

〉
= ∫ fi,e3md3, such as the directional velocities ui,e =

〈
31

i,e

〉
/ni,e and

temperatures Ti,e(Φ)=mi,e(
〈
32

i,e

〉
− ni,eu2

i,e)/ni,e, and other quantities of interest alternatively read

x
L
↔ x ,

ni,e

n0
↔ ni,e ,

3i,e

cse
,

ui,e

cse
↔ 3i,e, ui,e,

Ti,e

Te0
↔Ti,e ,

eΦ
kTe0

↔Φ=−ϕ ,
csefi,e

n0
↔ fi,e ,

LE
kTe/e

↔E,
LS(32, ϕ)

n0
↔ S(32, ϕ) ,

(2)

with n0 = ni(0) = ne(0), T e,i ,0 = T e,i(0), e the positive elementary charge, k the Boltzmann constant,
cse ≡ (kTe0/mi)1/2, and mi the ion mass. E = −dΦ/dx↔ dϕ/dx is the electric field and the ion source
is modeled accordingly to Bissel and Johnson assumptions11 in the form where the source strength
Si =Rnnne0eβΦ/kTe e−mi3

2/2kTn/(2πkTn)1/2, is modeled according to Harrison and Thompson26 as a
function of potential, i.e., ∼ nβe = eβΦ/kTe rather than of position. Factor β can take arbitrary val-
ues but here we employ only values β = 1 (after Bissel and Johnson11) and β = 0 (after Scheuer
and Emmert12). The term Rnn

11 can be regarded either as the frequency of volume ionization
νi = Rnn = cse/Li

14,25 or ascribed to an external ion-source originated from perpendicular direc-
tion, e.g., in the cases when the model is applied to scrape-off-layer2 (SOL) plasma in contact with
plasma-core of tokamak devices. It should be emphasized that, unlike Bissell and Johnson11 we strictly
distinguish the source temperature Tn (with the common subscript “n”) from self-consistently estab-
lished ion temperature T i(ϕ). By introducing ε ≡ λD/L where λD = (ε0kTe0/n0e2)1/2 is the Debye
length, ε0 is the “vacuum permeability” and pE(Φ) ≡ ε2E2/2 is the abbreviation for the electrostatic
pressure, the system (1) takes the form

3
∂fi
∂x

+ E
∂fi
∂3
= S(32, ϕ), 3

∂fe
∂x
− E

∂fe
∂3
= 0, ni − ne = ε

2 d(E2/2)
dϕ

≡ p′E , (3)

where prime denotes the derivative over the potential.
Under these conditions the virial V(Φ) , introduced below, is constant.27,28 One should keep in

mind that the electric field is finite everywhere even in the limit ni − ne = p′E = 0. The normalized form
of the total pressure balance therefore reads 2T− ε0E2/2≡V(Φ), with 2T≡∑

(ni,ekTi,e + ni,emi,eu2
i,e).

More precisely V(Φ) turns out to be constant at arbitrary closed surface of a box or cylinder (in
present one dimensional geometry) having bases coplanar with the end plates/walls.20 If Boltzmann
distribution of electrons is assumed, the non-dimensional virial takes the form

V≡Ti0 + Te0 = ni(Ti + u2
i ) + Te0e−ϕ − ε2 E2

2
, with ni = e−ϕ −

d
dϕ

(
ε2 E2

2

)
, (4)

and with normalized T e = T e0 ≡ 1 left explicitly for convenience. However, it should be noted that
assumption about pure Boltzmann distributed, i.e., Maxwellian electrons is intrinsic idealization
which is not consistent with the conservation of particle out-fluxes. Since the wall potential decreases
with increased ion temperature, this might affect the virial conservation as well, so considering its
behavior needs a detailed inspection, as will be done bellow.

Since no further information can be extracted from the Vlasov equation for electrons, the system
of Eqs. (1) (i.e., (3)) reduces to:

L/Li
√

2πTn

∫ ϕb

0

dϕ′e−βϕ
′

e
ϕ′−ϕ
2Tn

E(ϕ′)
K0

(
|ϕ′ − ϕ|

2Tn

)
= e−ϕ +

d(ε2E2/2)
dϕ

(5)

and

fi(ϕ − y)=
L/Li
√

2πTn

∫ ϕb

0

dϕ′e−βϕ
′

E(ϕ′)
e
ϕ′−ϕ+y

Tn√
(ϕ′ − ϕ + y)

, (6)
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where K0 in Eq. (5) is the Bessel function of zeroth order, y = 32/2 and ϕb stands for boundaries
of integration ϕPE or ϕW , depending on whether ε is neglected or not. For easier comparison of
this work with the previous paper20 it should be noted that the subscript “PE” replaces the subscript
“S” used in Ref. 20 and it refers to plasma edge. Also note that the abbreviation for the eigenvalue
B of integral equation, introduced by B&J11 for expressing equality of the ion and electron out-
fluxes, is in above equations simply replaced by equivalent quantity B≡ (L/Li)/

√
2πTn, (note that

Tn/T e0↔ Tn/) i.e., with the ionization length taking the role of a physical eigenvalue.25 In numerical
approach after Eq. (5) is solved iteratively (with E(ϕ) and formal eigenvalue value B) the wall potential
ϕW is found from particle flux balance, i.e., from B, for a particular set of parameters Tn, ε and β
(see, e.g., Refs. 11, 12, 14, and 25), while L/Li is calculated from:

L
Li
= e−ϕW

√
mi

2πme

(∫ ϕW

0

e−ϕdϕ
E(ϕ)

)−1

, (7)

where the integral in parentheses is the electron density ne,av averaged over the entire discharge from
x = −L to x = L resulting in a value of ne,a3 which is always slightly smaller than unity. Note that E(ϕ)
depends on parameters Tn and β but this is not emphasized explicitly in Eq. (7). With E(ϕ) known,
the ion velocity distribution function is calculated in a straightforward manner from Eq. (6). Then its
moments, such as ion density, directional ion velocity, flux, etc. can be found easily.

However, for comparing the theoretical results with those obtained in a numerical, experimental
or simulation domain of a normalized physical length L = 1, it is important to remind here that the
ion velocity distribution in CF discharges is a function of total particle energy rather than of position.
This means that it is independent of the potential profile shape, which, on the other hand, has been
shown to depend on source profile (see e.g., Refs. 25 and 29). It can be seen from Eq. (6) that a natural
normalization of ion VDF, which is independent of Li(β), must be of the form f i(β)Li/L. This fact is
illustrated for the first time in Fig. 1 where the ion VDFs, obtained numerically in the domain L = 1
for Tn = 1 and ε = 0, for values β = 1 (red color) and β = 0 (blue color) at several potentials within
plasma and sheath are plotted after being normalized each with Li(β)f i(β). It is evident that they are
identical to each other at any potential in plasma and sheath regions.

The typical quantities, obtained from numerical solutions of Eqs. (5) - (7) for ε = 0 and values
β = 0 and β = 1, are tabulated in the Appendix and presented in Fig. 2 versus temperature Tn. In
plot (a) ion temperature T i0 at the center of the discharge and ion temperature at the plasma edge
T iPE are shown. In graph (b) the potential at the plasma edge ΦPE is presented. Open circles show
values obtained from numerical solutions of the system (5) - (7), while the solid line shows result
obtained from approximate fitting formula (8) — see below. In figure (c) the wall potential ΦW is
plotted versus Tn and finally in plot (d) ionization length is presented. Also in this graph comparison

FIG. 1. Ion VDFs obtained numerically for Tn = 1, with ε = 0 for values β = 1 (red color) and β = 0 (blue color) at several
potentials within plasma and sheath.
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FIG. 2. In sub-figure (a) ion temperatures at the plasma center (T i0) and at the plasma edge (T iPE ) are presented versus Tn.
In plot (b) the plasma edge potential φPE is shown. Comparison with results obtained by the fitting formula (8) is shown also.
The wall potential for 2 values of β, φW (β = 1) and φW (β = 0) is plotted in graph (c). The source (or ionization) lengths Li(β
= 1) and Li(β = 0) in comparison with results obtained using the fitting formula (9) are presented in plot (d).

of exact solutions found from numerical solutions of Eqs. (5) - (7) for ε = 0 is compared with obtained
by fitting formula (9), given below.

For quick estimation of the plasma edge and sheath edge potentials ϕPE and ϕSE the following
approximate formulas can be used:20

ϕPE '
[
ln(
√
πT3/4

n + π)
]−1

, ϕSE ' ϕPE +
1
3

. (8)

The ionization length can be expressed in the form

Li/L '
(√

2πTn + 2 − 1 + β
)
/π2 (9)

while estimations for the differential ion polytropic coefficient function (DPCF) < = 1 + (d ln T )/(d ln
n), ion temperature and ion directional velocity are rewritten from Ref. 20 (note that here we replace
the symbol γ, introduced in Ref. 22 and used by coauthors throughout their subsequent works, with
< for avoiding possible mixing with various other quantities used in fusion related texts, such as the
sheath heat transmission coefficients2). Approximate formulas therefore read:

<iPETiPE u 0.656Ti0 + 0.23, u2
iPE = c2

sPE u 0.656Ti0 + 1.23, TiPE ≈ 0.61Ti0 − 0.18, (10)
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The value of ion temperature in the center of the discharge T i0 has to be read for a given source
temperature Tn from the Appendix. The quantity

c2
s (ϕ)=−

(
1
ne

dne

dϕ

)−1

+ <i(ϕ)Ti(ϕ)≡T ∗i,e + <iTi (11)

defines the “local ion-sound speed”, with T ∗i,e =−
(

1
ni,e

dni,e
dϕ

)−1
known also as the “screening

temperature” and the ion DPCF usually calculated via <i = 1 + ni
Ti

dTi/dϕ
dni/dϕ

.
Above considerations are strictly valid only in the original B&J model (ε = 0), i.e., until the sheath

thickness is negligible, so that ions produced in it can safely be neglected. According to Ref. 20 a
general relation for the ion directional velocity: u2

i = c2
s −u2

i,K+u2
E holds for ε� 1, under the condition

ε2E2/2≡ pE(ϕ)� p′E� p′′E , [with pE ≡ ε
2E/2= ∫

ϕPE

0 (ni−ne)dϕ < ni−ne� 1]. The general behavior
of these terms is illustrated in Fig. 3 where we show the characteristic points obtained numerically
in the generalized T&L model for Tn = 0, β = 1 with several finite values of ε. For comparing
the cases obtained with β = 1 and with β = 0 we refer to Fig. 2 in Ref. 20. From the profiles in
Fig. 3 it appears that (i) up to the point of inflection ϕPE of the pseudo-gradient d(ni − ne)/dϕ the
plasma quasineutrality condition (ni − ne � 1) holds with a high degree of reliability, while (ii) up
to the point of the pseudo-gradient maximum ϕSE the electrostatic pressure can be neglected. Since
this is a universal rule obeyed independently of external plasma parameters, such as the ion-source
temperature Tn, smallness parameter ε ≡ λD/L ∼ λD/Li and the source profile Si ∼ e−βϕ , the points
ϕPE and ϕSE have been recognized in Ref. 20 as well formulated, natural definitions of the plasma
and sheath edges, while the region ϕPE − ϕSE between them has been anticipated as the (weekly non-
neutral) transition region (PST) between the quasineutral plasma and the electric field-dominated
sheath. The magnitudes of field-pressure related quantities inside the PST in generalized (finite ε)
T&L, B&J and fluid models, can be nowadays best estimated quantitatively at the inflection point
via adopting the following scalings (see Ref. 20 and references therein):

δl δϕ E ε2E2/2 (ni − ne) d(ni − ne)/dϕ
T&L: ε8/9 ε4/9 ε−4/9 ε10/9 ε6/9 ε2/9

B&J: ε6/7 ε4/7 ε−2/7 ε10/7 ε6/7 ε2/7

fluid: ε4/5 ε2/5 ε−2/5 ε6/5 ε4/5 ε2/5

(12)

from which it follows, that the conditions for validity of the general expression for the ion directional
velocity: u2

i = c2
s − u2

i,K + u2
E within PST-region always holds for sufficiently small Debye lengths

(1� ε ≥ 0). Explicitly, this relation states:

u2
i =T ∗e + <iTi −

2T ∗e Γe

n2
e

K +
T ∗2e

ne

d2(ε2E2/2)

dϕ2
≡ c2

s − u2
i,K + u2

E (13)

FIG. 3. Characteristic points obtained for Tn = 0, β = 1 with several finite ε values. Note that d2(ni − ne)/dϕ2 is strongly
reduced, i.e., divided by a proper constant factor.
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where the term

K(ϕ)= fi(ϕ, 0) − 2
∂

∂ϕ

∫ ϕ

−∞

dy′f −i (y′, ϕ), with f −i =
∫ ϕW

ϕ

1
εE(ϕ′)

εS(ϕ′ − ϕ + y, ϕ′)√
2(ϕ′ − ϕ + y)

, (14)

satisfying condition K> 020 describes the contribution of the ions originating from the symmetric
part of the ion VDF, i.e., those ions which are created between the point of observation and the wall,
with zero-velocity ions presented separately. In the case of cold ion sources this expression reduces
to contribution of zero velocity ions only.20 In Eq. (13) the approximations based on estimations
concerning the relevancy of the field-pressure terms are taken into account, so the strict equality sign
stands there for convenience rather than the approximate one.

For the profiles illustrated for cold ion-source model in Fig. 3 it turns out, that in the case of
non-vanishing ni − ne � 1 (quasineutral plasma) the inflection point (PE) of d(ni − ne)/dϕ is rather
insensitive to particular values of ε and Tn, i.e., coincides with ϕPE as obtained for strictly neutral
plasma. Increase of ε e.g., above 10−3, however causes a shift of the inflection point towards the
plasma center. The shift is of the order of one tenth of the electron temperature but, according to
Fig. 2 in Ref. 20 with increased ion production within the sheath (β = 0) this shift might appear even
at smaller ε. For finite but small ε this requirement might be sensitive to the source profile (Sie−βϕ),
i.e., to value β, while with increased ion production within the sheath this insensitivity reduces, so
that, e.g., replacing the exponentially decreasing source (β = 1) with the flat one (β = 0) would cause
a shift of the inflection point towards the plasma center for about one tenth of the electron temperature
already for ε > 10−3. For ϕ = ϕPE the last term in expression u2

i = c2
s − u2

i,K + u2
E is negligible even

when sheath thickness is considerable, while the kinetic term u2
i,K is essential. This term decreases

strongly from center towards the wall, so that in cases when the sheath thickness decreases, or the
source strength either vanishes or its strength drops strongly in the region between ϕ = ϕPE and
ϕ = ϕW , the directional velocity reduces to u2

i = c2
sPE = 1 + <PETPE . With increased temperature

(c.f., Ref. 20) it appears that the width of the transition region betweenΦPE andΦSE does not depend
on either temperature as well (ΦSE −ΦPE ≈ 1/3), as illustrated also in Fig. 3. This behavior, obviously,
holds well for sufficiently small Debye length, e.g., ε < 10−3.

Definition of the sonic point u2
i =T ∗e +<iTi ≡ c2

s requires vanishing of last two terms in Eq. (13), i.e.,

T ∗e
d2(ε2E2/2)

dϕ2 =
2Γe
ne
K. Furthermore, since d2[ε2E2/2]/dϕ2 = d(ni − ne)/dϕ, it is clear, that in the limit of

infinitely thin sheath, i.e., ε = 0, both these terms vanish independently of each other at the inflection
point so that the sonic point coincides with it. This means that ϕB ,ε=0 = ϕPE , u2

iB,ε=0 = 1+<iPETiB ≡ c2
sB.

While all the quantities entering the limit ε = 0 can now be considered as completely elaborated,
i.e., known this work and Ref. 20 for arbitrary ion source temperature and profile, situation is math-
ematically and physically much more complicated with non-vanishing ε. For taking a closer insight
into this scenario we analyze the unified Bohm criterion in the form of three equations, i.e.,

u2
iB = 1 + <iBTiB ≡ c2

sB,
d(ni − ne)

dϕ

�����ϕB

= 2ΓeK(ϕϕB )eϕB and

u2
iB + TiB = (Ti0 + 1)e−ϕB − 1,

(15)

simplified for convenience (without essential loss of generality) with the assumption of Boltzmann

distributed electrons ne = exp(−ϕ) and T ∗e =−
(

1
ne

dne
dϕ

)−1
= 1. The first two of Eqs. (15), obviously,

originate from the definition of the ion sound Eq. (13) applied at the sonic point (ϕ = ϕB, u2
iB = c2

sB),
while the third one is the expression Eq. (4) rewritten under the condition pE ' 0 with T e = 1.

One can see immediately that the second equation of the unified Bohm criterion Eqs. (15) simply
gives the value of d(ni − ne)/dϕ at the sonic point, providing that the ion VDF, i.e., the kinetic term
K(ϕϕB ), as well as ϕB and the directional velocity ΓeB/neB = ΓiB/niB = uiB are known. This equation is
more important qualitatively than quantitatively. Namely, it states that, when the ionization within the
sheath is increased, either by increased ε for a chosen ion source within the sheath (β = 1), or when ε
is kept constant but the ion source within the sheath is increased, (β→ 0). The quantity d(ni − ne)/dϕ
> 0 at sonic point, in any case, must shift towards higher values as well. Quantitatively, however, one
is interested in possible determination of ϕB and uiB from first and third relation in Eqs. (15), but this
task, obviously, can hardly be accomplished without knowledge of <iB and/or <iBT iB.
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The method of bypassing the above problem is to rely on the scalings (12) for estimating
the shift of the potential in the form ∆ϕ = ϕB − ϕPE = Cϕδϕ where explicit form of the factor

Cϕ =Cϕ(Tn, β)=Cϕ(Tn)e
2β
7 ϕPE , which is of the order of unity, has been presented in Ref. 20.

Substitution of this expression into third of Eqs. (15) expanded in vicinity of ϕPE readily yields
∆u2

iB = [1 + TiPE + c2
sPE(ϕPE)]∆ϕ − ∆TiB. where ∆T iB is change in ion temperature inside the region

∆ϕ and terms in brackets can be replaced with the approximate expressions Eqs. (10) resulting in:

u2
iB ' c2

sPE + [1.266Ti0 + 2]Cϕ(Tn, β)ε4/7 − ∆TiB ' c2
sPE + CB(Tn, β)ε4/7 − ∆TiB. (16)

It turns out that for sufficiently high Tn ' 3 the coefficient CB = [1.266T i0 + 2]Cϕ depends quite

weekly on Tn, i.e., CB ≈ 3 for β = 1 and drops for about 20% for β = 0, due to factor e
2β
7 ϕPE .

With decreased Tn, however, CB shifts towards a doubled value. Moreover, it has been found that
the numerically obtained ∆u2

iB and ∆ϕ in Ref. 20 can be well fitted with theoretical predictions pro-
vided that CB ≈ 3 is multiplied by a correction factor of the order of 2. This quantitative discrepancy
is not surprising with having in mind that presented method of “bypassing” the problem of exact
determination of all relevant quantities at the sonic point is intrinsic estimation, and that, moreover,
the derivation of Cϕ(Tn, β) has been made on the intermediate scale theory from Ref. 19, where
analytic considerations have been shown to hold for rather high ion-source temperatures (coinciden-
tally Tn ' 3) which still has not only to be upgraded to lower ones but also better justified. Secondly,
the pressure balance equation employed in present “bypassing” of the problem (third of Eqs. (15)),
as well as some other assumptions related to self-establishing ion VDF in the generalized B&J
model, is strictly valid until the ion VDF is one-dimensional in phase-space. Last, but not least, it
does not seem plausible to expect that characteristic plasma-sheath points, i.e., ϕPE ϕPS and ϕB,
and the relevant quantities therein (such as u2

iB, ∆T iB and <i remain insensitive to increased ion
production, i.e., the ion VDF shape therein, at least not for any ion source temperature. For investi-
gating these effects we apply a more powerful and more realistic method, i.e., PIC simulations, as
follows.

B. Simulation approach

Similarly as in some previous works of co-authors addressed to particular problem of deter-
mining the ion DPFCs in T&L and B&J models16,30 for particle-in-cell (PIC) simulation31–34 we
use the one-dimensional (1D3v) BIT135 code. This code was designed primarily for fusion oriented
simulations35–37 in the SOL region with possibilities to add/subtract a variety of atomic and plasma–
wall interaction microscopic processes with the basic capability to maintain a desired population
of particles Maxwellian and cut-off Maxwellian, as measured in experiments (and as such assumed
also in theoretical models) even when not expected, i.e., in collision-free (low pressure) plasmas.
The unexpected (and still not fully understood) electron local thermodynamic equilibrium, known
as the Langmuir paradox (see e.g., Ref. 38) is in BIT1 achieved with an artificial Coulomb collision
mechanism, which turns out to have excellent performances (see Refs. 16, 30, and 39). In many
other PIC codes under such conditions the source Maxwellian electrons behave non-locally i.e., they
quickly leave the system so that it is very difficult to reach steady state at all. Next advantage of the
present code is, of course, its capability of performing interactive simulations and obtaining a large
number of results during relatively short times when the code is run in the parallel mode. However,
a special care should be taken in preparing the simulation parameters and justifying their relevancy
for particular physical scenarios, before the results from final runs can be considered as definite and
further processed and interpreted, as follows.

In the code the distributions functions of the particles that are either created by the volume source
or injected from the walls are given in terms of parallel T || and perpendicular T⊥ temperature with
respect to the external magnetic field. In present simulations a small magnetic field (B ∼ 10−4) Tesla
normal to both plates (in direction of x axis) is introduced, which does not affect either of distributions
and fluxes in the x direction, The length of the system is 5 cm and the system is divided into 12000
cells. The length of one cell is therefore 4.167 × 10−6 m. The surface of the boundary electrodes is
10−4 m2, so the volume of the system is 5 × 10−6 m3. Because we wish to get simulation results, that
correspond to different Debye lengths and consequently to different values of ε, the source strength
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is varied. But typical order of magnitude is 1022 electron ion pairs produced per second and per m3.
With such source the plasma density is typically of the order between 1015 and 1016 m−3. The parallel
and the perpendicular electron temperatures are both set to kT e = 1 eV. So the electron Debye lengths
are between 2.3 × 10−4 and 7.4 × 10−5 m. The length of the system is therefore between 210 and
more than 670 Debye lengths. So the number of cells per Debye length is between 17 and 56. The
electron plasma frequency is between fpe =

ωpe

2π = 2.8 × 108 s−1 and f pe = 8.9 × 108 s−1. Time step
∆t = 10−11 s is selected. This results in more than 100 time steps per electron plasma period even for
the largest plasma densities obtained in the simulation. Since we had rather powerful computational
resources at our disposal, a rather small number of physical particles per computer superparticle was
always selected. This number never exceeded 104 so we usually had up to 107 super-particles in the
system. Since the potential, density, temperature and other profiles are obtained as an average over
a large number of time steps (219 = 524288), the number of physical particles per computer particle
is not a crucial parameter and very smooth profiles of density, potential, temperature etc. are always
obtained.

If number of physical particles per computer particle is very large, plasma potential oscillates
with very large amplitude, which sometimes have frequency that corresponds to the local electron
plasma frequency (see e.g., Ref. 30). If superparticles are increased even further, oscillations with
rather strange spectra are sometimes observed. The time-averaged potential profiles, nevertheless,
can still be identical to theoretically predicted ones, but on the other hand fine details of simulated
VDFs are lost. As will be demonstrated bellow in present work the simulated VDFs perfectly fit
theoretical ones (unlike referred to simulations from Ref. 30) and this is achieved by decreasing the
size/charge of super-particles with a trial and error method for each density, until such oscillations
become insignificant. The price that is paid for usage of smaller superparticles are increased simulation
run-times and data storage resources.

It is interesting to note that the wavelength of the basic mode of plasma potential oscillations
is 2(L − lsh) rather than 2L. Here lsh is the apparent sheath thickness. This has been confirmed by
observing the instant potential profiles from one time-step to another. As already mentioned these
oscillations appear, when large superparticles are used. Another way to excite these oscillations is to
inject positive and negative particles into the system with slightly unbalanced rates. The sheath region
turns out to be time-independent even when the amplitude of the potential oscillations at the center
and elsewhere in plasma region is extremely high, even larger than the sheath potential drop. The
“sheath potential drop” is potential drop between the wall and the apparent sheath edge at a distance
lsh from the wall, which does not change its position and value of the potential, as the simulation
progresses.

III. COMPARISON OF RESULTS

A. Non-isothermal hot ion source T n > T e

The simulation method and results for cold and warm ion sources with β = 1 and β = 0 have
already been presented in much detail elsewhere, e.g., for Tn = 0 in Ref. 30 and for Tn = T e = 1
in Ref. 16. For qualitative and quantitative comparisons with theoretical results obtained for hot ion
sources and presented extensively in Ref. 20 we start here with the “familiar” temperature Tn = 7,
which has been exhaustively examined in Ref. 20. In Fig. 4 the virial V(ϕ) , given by formula (4) is
plotted for 2 values of ε. Solid lines refer to ε = 3.1 × 10−3 and dotted lines refer to ε = 10−3. Virial
found from the numerical solution of the theoretical model is plotted with violet solid and dotted
lines. It can be seen that it is constant. From the formula (4), using T e0 = 1 and T i0 = 2.18, one gets
V=Ti0 +Te0 ≈ 3.18. The value T i0 = 2.18 is read from the Table I in the Appendix at Tn = 7. The virial
found from the PIC simulation is shown by black solid and dotted lines. Also in this case the virial
is constant. It should be emphasized that the lines obtained from theoretical model on one hand and
from PIC simulation on the other can hardly be distinguished in spite of the fact that theoretical and
simulation curves have been obtained with different source profiles (β = 1 and β = 0, respectively).
Small shift appearing between two types of curves just indicates that ion temperatures obtained by
two methods with various ε can hardly be expected to perfectly match each other.
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FIG. 4. The exact (numerical) virial V(ϕ) (solid and dashed violet lines) and the double kinetic energy density (solid and
dashed blue lines) in comparison with corresponding quantities obtained from kinetic simulations (solid and dotted black
lines) for Tn = 7. Note that the decomposition of V(ϕ) is done only for numerical results.

In the same figure theoretical and simulated kinetic energy densities are compared also. Theo-
retical results are plotted with blue solid and dotted lines, while simulation results are shown with
black lines. Lines corresponding to the virial and to kinetic energy densities can be seen in the upper
part of the plot. In Fig. 4 also a more detailed decomposition of V into relevant contributing terms is
illustrated, but of course only for theoretical V.

In Fig. 5 the properties of ∫
ϕ

0 (ni − ne)dϕ′ = ε2E(ϕ)2/2 and its derivatives, found from PIC
simulation (green and blue curves) and from theoretical model20 (red curve), are inspected. Red
vertical dotted arrows mark the positions of PE, SE and the wall as found from the theoretical model
for ε = 0. The plasma edge and the sheath edge are located at ϕPE = 0.42 and ϕSE = 0.7, respectively,
while the wall is located at ϕW = 2.77. The PE corresponds to the inflection point of d(ni − ne)/dϕ,
while SE corresponds to the maximum of d(ni − ne)/dϕ. Green curves show results obtained from
PIC simulation for ε = 10−3, while blue curves correspond to ε = 3.5 × 10−3 The width of the PST
region is approximately ∼ 0.28. As it can be seen from comparison of red, green and blue curves that
this width is rather insensitive to ε values.

FIG. 5. Simulated electrostatic pressure ∫
ϕ

0 (ni − ne)dϕ′ = ε2E(ϕ)2/2 and its derivatives obtained for two densities for
Tn = 7, β = 0 in comparison with theoretical results obtained for ε = 0. The PE and SE (inflection and maximum points
of d(ni − ne)/dϕ, marked with red vertical dotted lines) are found from theoretical derivatives at ϕPE = 0.42 and ϕSE = 0.7,
respectively. The PST region (∼ 0.28) is, obviously quite insensitive to ε. The theoretical position of the wall (ϕW = 2.77) is
marked with dot-dashed red vertical line.



105311-13 Kos et al. AIP Advances 8, 105311 (2018)

Note that it is possible to calculate theoretical curves even for potentials that exceed the wall
potential, ϕW = 2.77. This is due to the fact that (starting from PE) the ion density profile in PST and
sheath region can be calculated from the asymmetric (collision-free) part of ion energy distribution
function simply shifted along the sheath potential. One can see that the simulated electrostatic pressure
ε2E(ϕ)2/2= ∫

ϕ
0 (ni − ne)dϕ′ and the charge density ni − ne = d(ε2E(ϕ)2/2)/dϕ in PST and the sheath

region (i.e., right from ϕPE) slightly deviate from their theoretical counterparts. This is not surprising
having in mind that the theoretical assumption about Boltzmann electrons is not fulfilled in PIC
simulations. This is mainly due to two reasons. The first is that the electron VDF in the PIC simulation
has a cutoff. The second reason is imperfect electron thermalisation in the kinetic code. In any case
equality of the simulated ion and electron fluxes must be satisfied at any point, while in present
theoretical model this is not the case. The reason is that in the model exact Boltzmann distribution
of electrons is assumed, rather than the one corresponding to cutoff Maxwellian, see e.g., Ref. 40.
In order to estimate whether this deviation of electrons from the Boltzmann distribution is a critical
issue or not, several quantities are analyzed in Fig. 6. The electron and ion densities are shown in
logarithmic scale in Fig. 6(a). From this figure it can be concluded that the deviation of electrons
from Maxwellian is not dramatic even when one approaches very close to the wall. In plot (b) the ion
temperature and the differential ion polytropic coefficient function are presented. It is obvious that
effects to ion temperature can not be identified at all, while the effects to the ion polytropic coefficient
can be considerable only close to the wall. Effects of the deviation of electrons from the Boltzmann
distribution are more pronounced for smaller simulated particle densities but the effects, of whatever
origin they are, to the sonic point seem to be irrelevant. This is illustrated in Fig. 6(c) It can be seen
clearly that when ε is increased, the sonic point (marked at cross-sections of squared ion directional
velocities and ion sound speeds obtained for two plasma densities) shifts towards the wall, while the
value of the ion directional velocity increases, as predicted by theory. Expressions (10) for calculating
u2

iB and ∆ϕ in this case yield nice quantitative agreement with simulation results.

FIG. 6. In plot (a) electron and ion densities ne(ϕ) and ni(ϕ) are shown in logarithmic scale. Red lines show theoretical results,
while green and blue lines present the results of simulations. In figure (b) the ion temperature T i(ϕ) and DPCF <i(ϕ) are
presented. In the bottom plot (c) squares of the ion sound speed c2

s (ϕ) and of the ion directional velocity u2
i (ϕ) are presented.

All the results are shown for Tn = 7. Red dotted vertical lines indicate the locations of PE and SE.
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FIG. 7. The ion VDFs obtained with PIC simulation (blue lines) compared with theoretical VDFs (red lines), with a relatively
weak source of Maxwellian ions of temperature Tn = 3, yielding ε = 6.9 × 10−3 in comparison with the theoretical VDFs
obtained for Tn = 3.

With decreased source temperature Tn the global behavior described above still holds. In Fig. 7.
ion VDFs obtained from PIC simulation for Tn = 3 are plotted (blue curves) and compared with
the theoretical ones (red lines) obtained from system Eqs.(5)-(6) with ε = 0. It is obvious that,
unlike examples from Ref. 16 the present ion VDFs, which are obtained with a large numbers of
cells and a high number of super-particles, perfectly fit the theoretical ones. For convenience we
insert the theoretical and simulation potential profiles with marked points of observations of VDFs.
In simulations these points have been chosen at various positions and the corresponding potentials
have been found after simulations were finished and the time averaged potential profiles have been
plotted. After that the theoretical VDFs have been found at these potentials (rather than at the same
positions) so that comparison of simulation results (obtained with arbitrary finite ε) is consistent
with the theoretical reference obtained for ε = 0. In spite of the fact that the potential profiles are
intrinsically different for ε , 0 and ε = 0 such comparison of VDFs taken at the same potentials is
then consistent.

Another purpose of the inserted graph with potential profile in Fig. 7 is to discuss the effects of
ion source in the sheath. It is obvious that the sheath in Fig. 7 for ε = 6.9 × 10−3 is relatively thick and
that simulated VDFs are always characterized by slow and negative-velocity ions while these ions
are completely absent in theoretical VDFs obtained with ε = 0. Although the contribution of the slow
and negative-velocity ions to the total ion density in the simulations for Tn = 3 is non-negligible, there
is no evidence that such (gradually decreasing) contribution to ion density can affect the locations
of the PE, SE and sonic point substantially. By recalling in mind that under common model and
simulation assumptions about geometric symmetry of the discharge and symmetry of the ion source
in 3-space, it is clear that the contribution of ions originated from the sheath (symmetric part of VDF)
can be safely subtracted in evaluating d(ni − ne)/dϕ, so that one is left with the asymmetric part of
the VDF there. This is, in fact, equivalent to considering the “idealized” VDFs i.e., the ones obtained
theoretically for ε = 0 (red curves in Fig. 7).

Note that presented simulations are performed with the source, which is constant everywhere,
including the sheath region (β = 0). If a source that decreases strongly in the sheath region (e.g.,
β = 1) was used, the presence of symmetric part of the VDF for finite ε in PST and sheath region,
would be even less significant, as it has been shown in Ref. 20. This means that, until the ion-source
temperature Tn is considerably above the electron temperature, the simulations and theoretical results
will always fit nicely to one another.

B. Decreased source temperature – Case T n = 1

With source temperature Tn decreasing, the plasma edge potential shifts towards the classical
T&L value (ϕPE = 0, 854. . .), so the plasma density there decreases in accordance to exp(−ϕPE).
In discharges where the ion source profile decreases exponentially in the direction towards the wall
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(β = 1), the contribution of ions with negative and zero velocities to ion total density should not
depend on ϕPE (and thus on Tn) at all, while their possible influence to characteristic plasma-sheath
points, i.e., ϕPE ϕPS and ϕB and the relevant quantities therein (such as u2

iB, ∆ϕ, ∆T iB and <i), can
be considered as negligible, as soon as the sheath thickness, is thin, i.e., ε sufficiently small. For
above reasons it is, in general, hard to expect that in discharges characterized with the same ε but
with different ion source profiles the effects of ions originated from the sheath will be the same. As
indicated in Fig. 2, obtained for a high source temperature (Tn = 7) with the “flat” ionization profile
(β = 0) the shifts of u2

iB and ∆ϕ appear similar but a little smaller than found in Ref. 20 for the
same temperature with β = 1, however, without any considerable effect to locations of inflection and
maximum points of charge pseudo-gradients, i.e., ϕPE and ϕSE . On the other hand, in the limit of
“cold” ion-source scenarios the value of plasma edge ϕPE turns out to be considerably less insensitive
to the source profile (c.f., Fig. 2 in Ref. 20), while the ion-polytropic coefficients <i in the transition
region and its vicinity (in plasma and the sheath) drop much faster with increased ε for β = 0 (and
even become negative) than for β = 1 (see Ref. 30). While in cold ion-source model these effects to
the ion sound velocity u2

iB = 1 + <iBTiB ≡ c2
sB might not be of special importance due to smallness of

T iB ≈ 0.04 this might be relevant for the scenarios with the intermediate ion temperatures, such as
those resulted with the source temperature Tn = 1 that in the limit ε = 0 yields some “intermediate”
ion temperature profile, i.e., T i0 = 0.421 and T iPE = 0.149 at plasma center and edges, respectively,
with the plasma potential drop ϕPE = 0.625 (c.f., Table I of Appendix A in Ref. 30).

Simulations Tn = T e = 1 have been performed under conditions similar to those in Ref. 16 for
several plasma densities, however, here with a much lower number of particles per super-particle
(from 102 to 104, depending on the density) to decrease the level of oscillations and for ensuring
a high resolution in phase space. As an illustration potential profiles for several ε are presented in
Fig. 8. In addition in the inserted graph 2 examples of the ion VDFs are presented but only for the
largest and the smallest plasma density, which correspond to ε1 = 7.58 × 10−4 and to ε4 = 2.67
× 10−2, respectively. For each selected density the distribution functions are shown at 2 positions.
These positions are marked by numbers. It can be seen immediately that the ion VDF, even when
obtained very deep in the sheath (e.g., number 4), is characterized with the long “tail” of ions which
penetrate into the plasma region. On the other hand no considerable tail can be detected in the VDF
for ε1 located in vicinity of ϕPE = 0.625, i.e., at position 2 (ϕ = 0.656). But on the other hand for
ε4, even at position 3 (ϕ = 0.936) the VDF exhibits a tail, which contains a considerable number of
ions moving to the “left” - i. e. away from the wall. So the contribution of the symmetric part of the
VDF can have considerable effect in decreasing the directional ion velocity, and thus the sonic point
as well.

In order to investigate described effects of constant source profile in more details additional
profiles of the relevant quantities obtained from simulations with Tn = 1 are plotted in Fig.9. An

FIG. 8. Potential profiles obtained from simulations for several values of ε, i.e., densities with Tn = T e = 1. Inserted graph
represents the ion VDFs obtained for two of those densities - the largest and the smallest. The potentials at which VDFs have
been monitored are indicated with open circles and numbers.
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FIG. 9. Ion temperature (a), polytropic coefficient (b) squares of directional velocity and ion sound speed (c) and derivatives
of electrostatic pressure term (d), obtained from simulation for Tn = T e = 1 and same plasma densities as in Fig. 8. For
comparison also theoretical results obtained for ε = 0 are shown with red lines. In graph (d) only the electrostatic pressure
derivatives from the simulation are presented.

example obtained with extremely small density (n0 = 3.1 × 1013 m−3) is included as well, just to
illustrate that it is out of range of the common rules that hold for small ε. Namely, from the profiles
of temperatures, polytropic coefficients directional and ion sound velocities plotted for ε1 and ε2 it
is clear that ϕPE and ϕSE are rather insensitive to ε, temperature and the source profile. This holds
relatively well even for a rather high value of ε, like ε3 = 7.86 × 10−3. However, while the sonic
point still shifts towards the wall, as in the case of high ion temperatures and β = 1, this shift is here
rather insignificant. More remarkable is the fact that the value of the ion directional velocity a that
point, on contrary to discharges with high source temperatures and β = 1, decreases with increased
ε. On one hand this means that the usage of expressions (10) for calculating ∆u2

iB and ∆ϕ in this case
is unjustified. But one should note that, unlike discharges with higher source-temperatures, where
the square of the ion-velocity profile is almost independent of ε, the u2

i profiles in Fig. 9 are quite
dependent on ε. Physically, that means that the ions originated from the sheath obstructs the “cooling”
of ions in the wall direction.

Nevertheless, it appears from above considerations that obtained shifts in quantities of interest
are so small that they may both be disregarded even for relatively high values of ε, such as ε3 =
7.86 × 10−3. The insignificance of these shifts, unexpectedly, appears to be even stronger for flat
source (β = 0) than for exponentially decreasing one (β = 1) and indicate that values ϕPE ≈ 0.625
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and u2
iB = c2

s ≈ 1.5 obtained from the theoretical model with ε = 0, can be regarded as universal ones
for any realistic collision-free discharge (ε sufficiently small, e.g., bellow 10−3) with ion source
temperatures being not far from Tn.

C. Effects of departure of ion VDF from theoretical one

Finally we quickly check out the hypothesis about possible employment of the theoretical, i.e.,
B&J, ion VDF to realistic physical scenarios, when the experimental VDFs considerably departure
from B&J one. For this purpose we perform the preliminary investigations of discharge with Tn = 3,
with the VDFs already presented in Fig. 7 for collision-free (CF) scenario.

In PIC Fig. 10(a) the results from CC simulations are replotted together with results obtained
with strongly enhanced Coulomb collisions, and with the isotropic ion-source (perpendicular temper-
atures T⊥ equal to the parallel one T ‖). The relevant temperature profiles corresponding to reference
(theoretical) theoretical model (ε = 0) and the corresponding electrostatic terms are presented in
Fig. 10(b), together with results obtained in simulations that are performed for a single, rather low
density (ε = 2.7 × 10−3).

There are several observations that we find important to be mentioned here as follows. Namely, in
spite of intentionally strong Coulomb collisions no isotropy of the ion VDF and the temperature has
been achieved in the ion-flow direction. Instead of a possible temperature expected in each direction
to be, at least in the center of discharge close to (2T⊥ + T ‖)/3 ≈ (6 + 1.08)/3 = 2.36, its value in

FIG. 10. (a) Ion velocity distribution function at several points of discharge in collisional regime, dominated by Coulomb
collisions (CC) in comparison with VDFs obtained in collision-free scenarios with other conditions kept unchanged, with
the reference ion VDF (ε = 0) shown as well. (b) Ion temperature in the flow direction and profiles of the electrostatic
pressure-related terms corresponding to discharge scenarios referred to in (a).
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the flow direction is there just slightly above the one obtained under CF scenario. Inspecting the ion
VDF shape (not presented here) shows that in direction of the flow it is just bell-shaped but far from
any equilibrium (Maxwellian) one. Finally there is no relevant indication that either the relevant fluid
quantities nor plasma and sheath edges and the sheath profiles are sensitive to a strong increase of
collisions. These results, shortly speaking, at least initially, justify our hypothesis that the VDF of
B&J can be considered as archetypal one, such that is appropriate for future detailed modeling and
solving the plasma boundary and sheath problem, rather than employing apparently more physically
plausible ones such as a shifted Maxwellian (see e.g., Ref. 41). In fact, the present finding just reflects
the fact that the ion VDF in vicinity of a “perfectly absorbing” boundary establishes as a non-local,
rather than the local one.

IV. SUMMARY AND DISCUSSION

According to our experience solving the collision-free discharge numerically with a high accu-
racy is an extremely stiff and CPU expensive task. As it can be seen from Ref. 20 that even when
done very carefully, the differentiated profiles obtained on discrete grids are far from being perfect.
The kinetic PIC simulation which runs in parallel on a large number of processors, on the other
hand, turned out to be faster than available codes for numerical solution of the CF model with warm
ions. Post-processing of the results of the parallel PIC code turned out to be simpler and even more
reliable than the results obtained from earlier single processor version. In this work the parallel
PIC code has been used to reproduce previous results (see Refs. 16 and 30) but with much better
resolution in phase space due to largely increased number of cells and superparticles in the sys-
tem. Also new results have been obtained, with special attention dedicated to the isothermal source
(Tn = T e) with a constant profile (so-called β = 0, or flat source). In addition in this work the basic
theoretical and numerical results of Bissel and Johnson model have been updated, especially the
ones concerning the microscopic and fluid quantities and relations between them in the direction
parallel to the flow and in the limit of vanishing ε. In kinetic simulations it is ensured, via employing
an artificial electron thermalisation, that electron distribution function remains isotropic Maxwellian
with Boltzmann distributed density in the longitudinal direction. This is in perfect agreement with the
model assumptions, that the electron temperature is equal in all directions - parallel and perpendicular
to the flow. The ions, which in both, model and simulations, are fully collision-free, are created by
a Maxwellian source. In the direction parallel to the flow they move freely. Their temperature in
perpendicular direction remains equal to initial one and it is independent of position. On the other
hand the ion VDF, which is established in the parallel direction deviates strongly from Maxwellian at
each point of the discharge and exhibits a strong “cooling” with a considerable temperature drop, with
respect to the corresponding parallel source temperature. This is demonstrated by the typical values
at the center of the discharge and at the plasma edge, presented in Table I. Perpendicular temperature
does not enter the problem of identifying and characterizing the planar discharge and sheath at all. In
fact, the choice of perpendicular temperature depends on physical scenario of interest, for which no
data are provided here. In simulations we have first checked the results (and the code) via simulation
runs performed with sources having zero and finite (equal to parallel) perpendicular temperatures. In
fact knowledge of perpendicular temperature is relevant for calculating higher moments of the VDF
and related quantities of interest, such as heat and energy fluxes. The ion VDF in the present model
turns out to be a function of their energy. In the limit of vanishing ε it does not depend on ionization
profile at all, provided it is normalized to the ionization length (rather than to the system length).
That means that the moments of VDFs, their pseudo-gradients and related quantities, such as ion
DPCF and the ion-sound speed are universally relevant (as reference ones) for each β of interest. By
pseudo-gradient it is meant that the derivation is performed over the potential ϕ and not over the space
coordinate x. But in the rest of this section the word gradient will be used instead of pseudo-gradient
and it always refers to derivation over ϕ. The closure of fluid equations describing the ion motion
in longitudinal direction is provided by the fact that ion temperature and its gradient are known at
any point of the discharge. The plasma edge appears to coincide with the inflection point of the ion
temperature and related quantities, such as DPCF and the corresponding local ion sound speed. In the
limit ε→ 0 this point coincides with the electric field singularity at ϕPE as well as with the inflection
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point of charge density gradient which, for ε → 0 turns out to be continuous but non-differentiable
function at plasma-side of ϕPE .

For finite but small values of ε, such as they are in all quasi-neutral plasmas, the charge density
gradient exhibits several remarkable properties. The first is that for a given ion temperature the
potential at which the inflection point of charge density gradient occurs is insensitive to particular
ε. In fact the inflection point is located at ϕPE(ε = 0), while the charge density itself, at the same
time still, remains negligible there. The second property is appearance of the maximum of charge
density derivative at the potential ϕSE , which is such that ϕSE − ϕPE ∼ 1/3. In addition the value of
charge density gradient at ϕSE is quite insensitive not only to ε but also to ion-source temperature.
At ϕSE the violation of quasineutrality is already considerable, but the electrostatic pressure (the
essential boundary condition for solving the sheath equation) appears to be still negligible there.
Above properties suggest that separate definitions of plasma edge at the potential ϕPE , sheath edge at
the potential ϕSE and the plasma-sheath transition region (PST) between them in the potential range
ϕSE − ϕPE are physically very well founded and make perfect sense.

The third remarkable property emerges from apparent independence of charge density deriva-
tives between ϕSE and ϕW of all the “external” discharge parameters, i.e., Tn, ε and β. This has
already been demonstrated in Ref. 20 for β = 1. Eq. (30) in Ref. 20 is referred to as the universal
collision-free analytic sheath-wall asymptote. Figs. 5 and 9-d presented here for β = 0 as well as
Fig 2 in Ref. 20 (the latter obtained for both β = 0 and β = 1) with temperatures Tn = 7, 1 and 0, respec-
tively, suggest that the hypothesis of the universal sheath-wall asymptote is a plausible one. Perhaps
it will be possible to prove this hypothesis in the near future providing that a more reliable and uni-
versally applicable analytic or semi-analytic solution than available at present17,19,42 is found for the
ion VDF.

In context of sheath properties time independence of the sheath profile, observed in the PIC
simulations, during large-amplitude potential oscillations in the quasi-neutral plasma region, irre-
spectively of nature of their triggering, is the fourth important property of the sheath boundary ϕSE

and the electrostatic pressure in the sheath. This issue deserves particular attention in forthcoming
investigations, especially the ones related to sudden bursts of plasma particles, such as ELMs and
related parallel plasma transport phenomena.

The ion directional velocity and the ion temperature at the plasma edge, appear to be the most
important quantities to be determined for calculating related quantities of interest, such as heat fluxes.
In this work it was demonstrated that in high density plasmas (negligible ε) the sonic point coincides
with ϕPE , only if the ion sound speed is expressed in terms of local ion temperature and its gradients
(note that in case of non-Maxwellian electrons the local electron temperature and respective gradients
must be known as well). The effects of non-vanishing ε, which are formulated with the unified Bohm
criterion Eq. (13), i.e., the one that takes into account the electrostatic pressure and kinetic effects
related to those ions which originate from the region between the point of observation and the wall.
The effects of these ions is manifested as a slight shift of sonic point from ϕPE towards the wall as ε is
increased from zero to finite values, while the corresponding shift in the value of the Bohm velocity
and ion directional velocity is observed towards either higher or lower values – depending on the
ion-source temperature, but manifesting themselves through the corresponding local ion temperature
and the source strength and profile within the sheath. In cases of ion sources with temperatures several
times above the electron temperature (both parallel) the Bohm velocity increases independently of the
source profile, as predicted by Eqs. (16), while in cases when the ion source temperature is comparable
to or even smaller than the electron temperature, this behavior is reversed, however, only for “flat”
(β = 0) ion sources. These effects might manifest themselves through the term κiT i. However, in
PST region this term appears to become less significant as the ion temperature decreases. One can
confirm this assumption by comparing the ion-sound speed profiles, presented for Tn = 7 (TPE =
1.165) and Tn = 1 (TPE = 0.146) in Fig. 6–(c) and Fig. 9–(c), respectively. As opposed to the ion
sound speed, the directional ion velocity for small ion temperatures is rather sensitive to ε. This can
be seen in the same figures. Ions originating from the sheath with negative velocities decrease the
directional ion velocity in the whole plasma region. This effect is illustrated by simulations performed
with very low plasma density (3.1 × 1013 m−3). It is interesting to note that only in the case of a
thick sheath such as the one corresponding to this density (c.f., Fig. 8) DPFC drops to a value close
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to unity, otherwise it is considerable higher up to <i ,PE(Tn = 1, ε = 0) ' 3.34 (see e.g., Table I
in Ref. 20).

For plasmas with more realistic ε-values, it appears that discussed shifts are small enough to be
considered as numerically and experimentally insignificant. In e.g., fusion-relevant and many other
experimental plasmas, where ε is finite but small, the shifts of ϕ and ui relatively to the reference
model (obtained with ε = 0) might be considered to be of the same order as the diagnostic errors or
even smaller. Besides the question of the Bohm velocity, even if it is exactly known, the question
arises about determining its location ϕB. To do this one can simply use theoretical data, such as
the data presented in Table I, but it must be remembered that the intrinsic information relating any
directional ion velocity with the potential is already contained in conservation of the total (kinetic
and electrostatic) energy density Eq. (4), named the virial. Unlike the conservation of energy for
ions Eq. (13) (the unified Bohm relation), which is intrinsically approximate but well satisfied for
small ε up to ϕSE , the Eq. (4) is demonstrated here to be strictly satisfied at any location and for
any ε. Moreover, with neglected electrostatic pressure and a spatially constant electron temperature
(T e = T e0 = 1) Eq. (4) reduces to a very simple relation connecting the ion directional velocity and
the plasma potential, that holds with a high reliability also right from the sheath edge (e.g., up to
ϕSE + 1/2).

It is a long-standing26 practice to employ the total kinetic energy density Eq. (4) for determining
the plasma-edge or the sonic-point potential. Alternatively, this can be done if the ion temperature
drop with respect to plasma center and the ion-directional velocity at the point of observation are both
known (see e.g., Ref. 20 and references therein). On the other hand, finding the Bohm velocity (e.g., in
fluid simulations and experimental plasmas) requires knowledge about that location/potential, usually
based on definitions of the (intermediate) electric field value/scaling and, moreover, by employing the
standard isothermal/adiabatic constants, to be determined via various kinetic approaches and methods
(see e.g., Refs. 43–46). The history of plasma physics and diagnostics teaches us that looking for
values and/or expressions such as unified and/or generalized Bohm criteria (see e.g., Ref. 20 and
references therein) aiming for precise quantitative characterization of the common plasma-sheath
boundary as the sonic point is not only demanding but physically highly disputable matter. However,
based on present considerations one may take another point of view, i.e., to first identify a convenient
plasma potential and with this (apparently arbitrary) input to simply employ the pressure balance
Eq. (4) for calculating the directional velocity at that point. The term “convenient”, however, does
not give too much freedom since, according to present investigation any arbitrariness is restricted
to a rather narrow PST-region, or eventually deeper into the sheath, but starting from ϕPE , which is
already a well tabulated quantity in the present model. Namely, the central question of interest in many
experiments, theory and fluid simulations is, in fact, to identify and characterize a proper location
where the ion directional velocity and/or kinetic energy has to be calculated, such that, between that
point and the wall, the moments of ion and electron VDFs are unaffected by possible microscopic
volume processes with accompanied gains and losses. So, e.g., in plasmas with finite ε the reference
potential for calculating such a proper u2

i , in discharges with β = 1 should be closer to ϕPE than in
discharges with β = 0, but the error caused by a particular choice of ϕ (and corresponding u2

i ) is
expected to be negligible until ε is reasonably small. In such cases the ion directional velocity found
by this approach still remains close to the sonic one, calculated in terms of DPCF as tabulated, e.g.,
in Ref. 20.

In the cases of extremely thick sheaths (which are more of academic than of practical interest),
with ionization present in the entire sheath (such as that one simulated with very low plasma density
illustrated in Figs. 8 and 9) it is hard to say, which location is the proper one, in spite of the fact that
the sonic point and the Bohm velocity have been found exactly. Here it must be noted that even in
this case the charge density gradient (Fig. 9) does not deviate from the regular ones (obtained for
small ε), even relatively deep in the sheath, meaning that the charge-densities themselves differ from
each other only for an additive constant that has been lost during normalization of electron and ion
densities to unity.

Finally, we consider the hypothesis that the VDF of B&J can be considered as a universal one,
such that is appropriate for reliable kinetic modeling and solving the plasma boundary and sheath
problem with well formulated boundary conditions in collision dominated plasmas as well. However
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this task requires the analytic expression for the ion VDF that would be more reliable than currently
available ones.
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APPENDIX: NUMERICAL PLASMA PARAMETERS

In this Appendix numerical values of various plasma parameters, as obtained from the theoretical
model are presented. Table I can be used for quick estimation of relevant plasma parameters using
the formulas (8) - (16) or for comparison with PIC simulations. The presented quantities are: ion
source temperature Tn, plasma edge potential ϕPE , ion temperature in center of the discharge T i0,
ion temperature at the plasma edge T iPE , wall potential for exponential source profile, ϕW (β = 1),

TABLE I. Source temperature Tn, plasma edge potentialϕPE , ion temperature in center of the discharge T i0 and at the plasma
edge T iPE , wall potential ϕW (β = 1), ionization length Li ,β=1, wall potential ϕW (β = 0) and ionization length Li ,β=0. Note
that here the ionization length is formulated in accordance to Riemann and it is by a factor

√
2 larger than the ionization length

defined according to Harrison and Thompson. See Ref. 25 for more details.

Tn ϕPE T i0 TPE ϕW ,β=1 Li ,β=1 ϕW ,β=0 Li ,β=0

0 0.854 0.000 0.040 3.559 0.543 3.722 0.485
0.008 0.854 0.004 0.040 3.554 0.574 3.715 0.489
0.010 0.852 0.005 0.040 3.553 0.575 3.686 0.489
0.012 0.85 0.006 0.040 3.552 0.575 3.685 0.490
0.015 0.848 0.008 0.040 3.551 0.576 3.683 0.491
0.018 0.847 0.009 0.040 3.549 0.577 3.682 0.491
0.025 0.843 0.014 0.040 3.546 0.579 3.679 0.493
0.033 0.839 0.016 0.040 3.542 0.581 3.675 0.495
0.04 0.835 0.020 0.040 3.539 0.583 3.672 0.497
0.05 0.831 0.025 0.040 3.534 0.586 3.664 0.499
0.06 0.826 0.030 0.040 3.529 0.588 3.661 0.501
0.07 0.822 0.035 0.040 3.525 0.591 3.655 0.503
0.08 0.819 0.039 0.040 3.520 0.593 3.653 0.506
0.09 0.814 0.045 0.040 3.516 0.596 3.649 0.508
0.1 0.810 0.049 0.040 3.512 0.599 3.644 0.510
0.2 0.775 0.096 0.047 3.471 0.623 3.600 0.531
0.33 0.738 0.157 0.059 3.425 0.649 3.556 0.554
0.5 0.700 0.225 0.077 3.374 0.679 3.501 0.585
0.66 0.671 0.297 0.102 3.333 0.706 3.454 0.611
1 0.625 0.418 0.146 3.260 0.754 3.378 0.656
1.5 0.578 0.595 0.223 3.176 0.813 3.289 0.714
2 0.546 0.761 0.305 3.109 0.863 3.218 0.763
3 0.501 1.074 0.468 3.006 0.949 3.108 0.846
4 0.471 1.368 0.646 2.928 1.020 3.025 0.914
5 0.450 1.650 0.820 2.864 1.082 2.958 0.975
6 0.433 1.930 0.99 2.812 1.137 2.902 1.028
7 0.419 2.160 1.156 2.764 1.188 2.853 1.077
8 0.408 2.430 1.310 2.723 1.236 2.809 1.123
9 0.398 2.670 1.460 2.685 1.28 2.770 1.166
10 0.390 2.880 1.600 2.652 1.321 2.735 1.205
12 0.376 3.310 1.870 2.591 1.400 2.687 1.262
15 0.360 3.800 2.180 2.522 1.495 2.600 1.372
17 0.351 4.120 2.350 2.479 1.557 2.561 1.424
20 0.341 4.480 2.580 2.422 1.644 2.497 1.516
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ionization length for exponential source profile Li ,β=1, wall potential for flat source ϕW (β = 0) and
ionization length for flat source Li ,β=0.
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16 J. Krek, N. Jelić, and J. Duhovnik, “Particle-in-cell (pic) simulations on plasma-sheath boundary in collision-free plasmas

with warm-ion sources,” Nucl. Eng. Des. 241, 1261–1266 (2011).
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40 N. Jelić, “Cutoff effects of electron velocity distribution to the properties of plasma parameters near the plasma-sheath
boundary,” Phys. Plasmas 18, 113504 (2011).

41 X.-Z. Tang and Z. Guo, “Kinetic model for the collisionless sheath of a collisional plasma,” Phys. Plasmas 23, 083503
(2016).
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