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Abstract. Closed biological membranes were considered within the spontaneous curvature
model. Ground state membrane shapes were compared with Monte Carlo simulations in the
thermal equilibrium, where membranes are subject to thermal fluctuations. The results of the
two approaches correspond well with each other. The oblate discocyte membrane shapes are
obtained in the ground state but can become metastable when thermal fluctuations are taken
into account. The nematic ordering in oblate and stomatocyte vesicle membranes was also
studied. It was confirmed that the net topological charge on the surfaces with the topology of
a sphere was 2. On the oblate vesicle four topological defects, each with charge 1/2, assembled
in the region exhibiting the highest Gaussian curvature. On the stomatocyte vesicle with six
topological defects, each with charge 1/2, and two topological antidefects, each with charge
−1/2, the latter assembled in the region with a negative Gaussian curvature. The position of
topological defects is strongly curvature dependent.

1. Introduction
Biological cells are enclosed by a membrane that serves as a barrier separating the interior of the
cell from its surroundings [1]. Biological membranes are actively or passively engaged in trans-
membrane transport, encapsulation [2, 3], communication between cells and/or cell organelles
and the cell’s waste control. Biological membranes are complex aggregates, composed of lipid
molecules, carbohydrates, proteins and other components [4].

The main components of biological membranes are lipid molecules that are organized in a
molecular bilayer [5]. The thickness of the lipid bilayer is around 5 nm, which is several orders
of magnitude smaller than the lateral dimensions of the lipid vesicles or cells they enclose. This
enables us to use the continuum approach in the theoretical description of membrane surfaces.
Lipid bilayers in normal conditions exhibit very low resistance to bending and are therefore
subject to thermal fluctuations [6].
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Human erythrocytes have been intensively studied in the past. Much theoretical work has
been devoted to understanding the origin of different shapes of red blood cells, such as discocytes
or stomatocytes. One of the models that successfully predicted the stability these shapes is
Helfrich’s spontaneous curvature model [7]. Within the Helfrich’s spontaneous curvature model
stomatocytes and discocytes were calculated for the first time using the calculus of variation.
The shapes were in good agreement with those observed in experiments.

Biological membranes can also exhibit in-plane ordering, for example lipid bilayers in regions
of high curvature [8], or coated with proteins [9]. The shapes of viruses can also depend on
the presence of disclinations in their protein shell [10]. A mimimal model capturing the main
phenomena related to the orientational order in the membrane has been developed for colloids
coated with a thin sheet of nematic liquid crystals, also referred to as nematic shells [11, 10].
Liquid crystal molecules are oriented within the tangent plane of the shell. In nematic shells
with the topology of a sphere, topological defects are inevitable [12]. At the origin of topological
defects, the orientational order is melted. The position of topological defects are curvature
dependent [10, 13, 14, 15, 16]. On a spherical surface, the equilibrium configuration typically
has four topological defects residing in vertices of a tetrahedron in order to maximize their
mutual separation, which has been proved analytically [17] and confirmed experimentally [18].

In this work, we consider closed membrane surfaces with the topology of a sphere. We
present different methods for studying membrane configurations we previously described in [19]
and furthermore show some new, unpublished results. The paper is organized as follows. In
Sec. 2, we introduce the theoretical models and briefly discuss the numerical procedures used
to calculate equilibrium closed membrane shapes and nematic ordering. In Sec. 3, we present
some of the results of our calculations and compare the closed membrane shapes in a ground
state to those subject to thermal fluctuations. We also determine the nematic ordering on a
membrane surface. In Sec. 4, we present our conclusions.

2. Models and methods
2.1. Bending energy of the membrane
Many theoretical approaches have been used in order to study the shape transformations of
the closed shapes of biological membranes. In this work we used the model formulated by W.
Helfrich [20] already in 1973, which treats the membrane as a homogeneous two-dimensional
fluid surface characterized by the local bending energy density of the membrane in the form
[7, 20, 21, 22, 23]:

fb =
κ

2
(C1 + C2 − C0)

2 + κ C1C2 , (1)

where κ and κ are the membrane bending stiffness and saddle-splay modulus, respectively, C1

and C2 are the principal curvatures, and C0 is the spontaneous curvature of the surface. Similar
models were proposed by Canham [24] and Evans [21].

The overall bending energy of the membrane, Ftot, can be obtained by integrating Eq. (1)
over the whole membrane surface:

Ftot =

∫
S
fb dS, (2)

where dS is an infinitesimal element of the vesicle area S. From the Gauss-Bonnet theorem we
know that the last term on the right-hand side of Eq. (1), if integrated over the closed surfaces
of fixed topology, is a constant.

In the present work, we consider closed membrane shapes with the topology of a sphere. The
last term on the right-hand side of Eq. (1) does not influence our shape analysis and can therefore
be neglected. The bending stiffness κ of various lipid bilayers was experimentally measured (see,
for example, [25], [26], [27], [28], [29], [30] and references therein).
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2.2. Ground state calculations
We neglect membrane shape fluctuations due to thermal noise. We consider closed membrane
shapes which are in the energy ground state and axisymmetric. To theoretically describe such
shapes, we need to define the contour of the vesicle cross-section. Let the shapes be symmetric
about the z-axis. The curve that defines the contour of the vesicle cross-section is rotated around
the z-axis by 2π, which defines the surface of the vesicle. To describe the vesicle contour in the
r-z plane, we introduce the arc length of contour s and angle, θ(s), between the tangent to the
contour and the plane perpendicular to the rotation axis z. If θ(s) is known, the vesicle contour
can be calculated by the following parametric equations:

z(s) =

∫ s

0
sin θ(s′) ds′, (3)

r(s) =

∫ s

0
cos θ(s′) ds′, (4)

where r(s) and z(s) are the coordinates of vesicle contour in r-z plane. We can express the
function θ(s) in form of the Fourier series [31]:

θ(s) =
θ0
Ls

s+

N∑
n=1

an sin

(
nπ

Ls
s

)
, (5)

where Ls is the contour length, N is the number of Fourier modes and an are the Fourier
amplitudes, which are calculated by minimizing the bending energy Ftot. If we want to restrict
our calculations to the closed membrane shapes, we have to apply the following boundary
conditions: θ(0) = 0, θ(Ls) = π, r(0) = r(Ls) = 0, which means that θ0 = π in Eq. (5). The
bending energy Ftot is basically the function of Fourier amplitudes an and the contour length
Ls, therefore we need perform the numerical minimization of the function of many variables in
order to calculate the equilibrium vesicle shapes [31, 32, 33]. In the minimization process, the
constraints on the surface area and the volume of the vesicle have to be taken into account in
order to ensure fixed value of the reduced volume v. The reduced volume v is defined as a ratio
of the vesicle volume to the volume of the sphere with the same surface area.

2.3. Nematic shells
We have studied nematic ordering on the vesicles, which we calculated within the spontaneous
curvature model as described above. We use the minimal model of in-plane ordering within
vesicle membranes, which was developed to study nematic shells [11, 34]. Molecules are bound
to lie in the local tangent plane of the surface. To describe the orientational ordering of molecules,
we define the surface order tensor Q. We introduce a local orthonormal basis (e1, e2) in which
Q is defined as [13, 35]:

Q = q0(e1 ⊗ e1 − e2 ⊗ e2) + qm(e1 ⊗ e2 + e2 ⊗ e1),

where q0 and qm are scalar functions. In a diagonal form, tensor Q can be written as:

Q = λ(n⊗ n− n⊥ ⊗ n⊥),

where λ and −λ are eigenvalues of eigenvectors n and n⊥. Value λ is a measure for the
orientational order with values in the interval λ ∈ [0, 1/2]. Value λ = 0 corresponds to the
isotropic state with no orientational order at all, while the value λ = 1/2 corresponds to the
maximal degree of the orientational order. Topological defects are points with no orientational
order, therefore they usually occur where λ = 0. The basic characteristic property of the
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topological defect is its topological charge [36, 35], defined as the winding number of the vector
field of molecules on the tangent plane at the defect [13]. Topological charge has positive value
for topological defects and negative value for topological antidefects. The theorem of Poincaré
[37] states that the net topological charge is determined by a surface topology and is equal to 2
for a sphere and all surfaces obtained by smoothly deforming a sphere.

The direction of molecules and the orientational order at any given point on a vesicle can be
calculated from the values of q0 and qm. We minimize the free energy in order to calculate the
nematic ordering. In the simplest form, the dimensionless free energy density is [35]:

f̃ =

(
R

ξ0

)2(
t TrQ̃2 +

1

4

(
TrQ̃2

)2
)
+

1

2

∣∣∣∇̃sQ̃
∣∣∣2 , (6)

where R is a characteristic length of the vesicle membrane and ξ0 a nematic coherence length,
which is the shortest length in the system, typically in the nanoscopic range. An ordered
phase occurs below critical temperature, when t is negative. Operator ∇̃s represents the surface
gradient. In order to get the dimensionless expression for the energy density, we have scaled
tensor Q and all the distances, which is why we used the tilde notation.

By integrating Eq. (6) over the whole surface of a vesicle membrane the total free energy is
obtained and Monte Carlo method is used to minimize the total free energy. Values of q̃0 and q̃m
are randomly changed at random locations on the vesicle surface, until we reach the equilibrium
configuration. The tilde notation denotes the scaled q0 and qm in the dimensionless expression
for energy (Eq. (6)).

2.4. Thermal equilibrium calculations
To go beyond the ground state and model systems in the thermodynamic equilibrium, one needs
to consider also thermal noise. Biological systems are often “soft enough” that thermal energy
can induce important configuration changes of the system. As already mentioned in Sec. 1, lipid
bilayers are, due to their low resistance to bending, subject to thermal shape fluctuations. In
this section we describe the Monte Carlo simulations that take thermal fluctuations into account.

The fluid vesicle is represented by a set of N vertices that are linked by tethers (i.e. bonds)
of variable length l in order to form a closed, randomly triangulated, self-avoiding network
[38, 39]. The lengths of the tethers can vary between a minimal value, lmin, and a maximal
value, lmax. The self-avoidance of the network is implemented by ensuring that no vertex can
penetrate through the triangular network and that no bond can cut through another bond. In
our simulations we assume lmax/lmin = 1.7.

The randomly triangulated network acquires its lateral fluidity from a bond flip mechanism
[38, 39]. A single bond flip involves the four vertices of two neighboring triangles. The tether
connecting the two vertices in a diagonal direction is cut and reestablished between the other
two, previously unconnected, vertices.

The microstates of the vesicle are sampled according to the Metropolis algorithm, with the
energy for a given microstate

E = Ftot −∆p V, (7)

where the first contribution is the elastic bending energy of the vesicle (Eq. (2)) and the second
contribution accounts for the energy change with the change of the volume of the vesicle, V ,
due to the pressure difference, ∆p, inside and outside of the vesicle. Our vesicle consists of a
symmetric membrane (including the absence of a mismatch between the lateral areas of the two
individual membrane leaflets), therefore we do not need to include the spontaneous curvature
(C0 = 0). Vesicle also does not change it’s topology, which means that the Gaussian bending
contribution (last term on the right-hand side of Eq. (1) integrated over the vesicle surface) is
constant and therefore not taken into account in our calculations. The bending energy Ftot of
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Figure 1. Monte Carlo evolution of the closed membrane vesicle from an initial quasi-spherical
state towards an equilibrium stomatocyte state. The pressure difference is ∆p = −0.075. The
relative volume of the vesicle is presented as a function of the Monte-Carlo time (measured in
mcs). The average relative volume in the equilibrium stomatocyte state is ⟨v⟩ = 0.181± 0.007,
while in the metastable oblate discocyte state ⟨v⟩ = 0.50±0.02. Above the curve, three snapshots
of the vesicle are shown: the inital quazi-sphere, the discocyte and the stomatocyte. Below
the curve, two snapshots of the vesicle are shown: the left configuration occurred during the
transition from the quasi-sphere towards the metastable discocyte and the right configuration
occurred during transition from the discocyte towards the equilibirum stomatocyte state.

the discretized vesicle (i.e., of the triangulated network) is calculated as described by Gompper
and Kroll [39, 38]; for a recent review, see [40].

The evolution of the system is measured in Monte Carlo sweeps (mcs). One mcs consists of
individual attempts to displace each of the N vertices by a random increment in the sphere with
radius δ, centered at the vertex, followed by RbN attempts to flip a randomly chosen bond. We
denote Rb as the bond-flip ratio, which defines how many attempts to flip a bond are made per
one attempt to move a vertex in one mcs. Note that the bond-flip ratio is connected to the lateral
diffusion coefficient within the membrane, i.e. to the membrane viscosity [41, 42]. Diffusion also
introduces a real time scale in the simulations and allows simulation of the dynamics of the
modelled system (not considered in this work). In our simulations we have chosen Rb = 3 and
δ/lmin = 0.15.

In our simulations the vesicle consists of N = 1447 vertices, which are connected with
3(N − 2) = 4335 bonds to form Nt = 2(N − 2) = 2890 triangles. The spherical vesicle has
therefore a radius of approx. 13. During simulations the coordination number for each vertex
(i.e. the number of nearest neighbors, Z) is allowed to vary between 4 and 8. For the bending
stiffness of the vesicle we use κ = 10 kBT , where kB is the Boltzmann constant and T the
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s=0

s L=
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Figure 2. The calculated vector field in the membrane and contour plot of λ/λc ratio, where
condensation value λc stands for the highest possible value of λ at given t < 0 (left panel).
Configuration was calculated for R/ξ0 = 20 and t = −0.03. The right panel shows the oblate
vesicle shape with the reduced volume v = 0.60, calculated within the spontaneous curvature
model for C0 = 0. In the left panel topological defects with topological charge 1/2 are encircled
with black lines. The right panel shows approximate positions of topological defects, which are
represented by the black and grey dots.

absolute energy. In the following we use lmin as the unit length and kBT as the unit of energy.

3. Results and Discussion
The result of minimizing the bending energy Ftot, as defined in Section 2, yield ground state
configurations of stomatocytic, oblate and prolate shapes, each of them being the equilibrium
shapes in some range of the reduced volume v, as reported in [19]. Similar results were obtained
in [43, 44]. In [19] we also compared minimal energy shapes (as described in Sec. 2.2) and
thermal equilibrium shapes 2.4. The method described in Sec. 2.2 allows us to set the value for
the reduced volume v, so that we are able to calculate the whole spectrum of shapes for different
reduced volumes. In Monte Carlo simulations we have changed the parameter ∆p (inside/outside
pressure difference). Once we have obtained the equilibrium state for the given ∆p, we were also
able to calculate the average reduced volume ⟨v⟩ for that state, in order to compare thermal
equilibrium and ground state calculations. Thermal equilibrium states obtained by Monte Carlo
simulations correspond well to the ground state shapes calculated by the minimization of the
bending energy.

Ground state oblate shapes are possible only in a small region of the values of the reduced
volume v. By using Monte Carlo simulations we were not able to obtain the equilibrium but
only “transient” oblate shapes. Figure 1 shows the Monte Carlo evolution of the vesicle from
an initial quasi-spherical towards an equilibrium stomatocyte state. As can be seen, the vesicle
spends a relatively long “time” in a metastable oblate discocyte state before it reaches the
equilibrium state.

We calculated the nematic ordering of the oblate vesicle membrane with the reduced volume
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Figure 3. The calculated vector field in the membrane and contour plot of λ/λc ratio, where
condensation value λc stands for the highest possible value of λ at given t < 0 (left panel).
Configuration was calculated for R/ξ0 = 40 and t = −0.03. The right panel shows stomatocyte
vesicle shape with the reduced volume v = 0.50, calculated within the spontaneous curvature
model for C0 = 0. In the left panel topological defects with topological charge 1/2 are encircled
with black lines, while antidefects with topological charge −1/2 are encircled with black dashed
lines. The right panel shows approximate positions of topological defects and antidefects. The
black and grey dots represent topological defects, while the red dots represent antidefects.

v = 0.60, which was calculated within the spontaneous curvature model. In figure 2 the
topological defects are points where λ = 0 (dark red color). The equilibrium configuration
has four topological defects, each with charge 1/2, which satisfies the Poincaré theorem [37].
Topological defects occur in the region of the vesicle with the highest positive Gaussian curvature.
Regions of the vesicle exhibiting lower Gaussian curvature have a higher degree of orientational
order (yellow color). The equilibrium configuration and the positions of topological defects are
thus strongly curvature driven as previously described in [13, 16].

The nematic ordering in the membrane of the stomatocyte vesicle (figure 3) is more complex,
because some of the membrane regions exhibit negative Gaussian curvature, which is favorable
for topological antidefects. In the membrane regions with a negative Gaussian curvature two
antidefects occur, each with topological charge −1/2. The stomatocyte is composed of two
approximately spherical surfaces and the neck which connects them. Both spherical surfaces
have a positive Gaussian curvature, while the neck region has a negative Gaussian curvature.
The positive Gaussian curvature is favorable for topological defects. To this end, we can observe
three topological defects on each spherical surface, each with charge 1/2. If we sum up all
topological charges on the membrane of the stomatocyte vesicle, we get the net topological
charge 2, which satisfies the theorem of Poincaré [37]. In figure 3, we observe that the “outer”
surface of the stomatocyte has a higher degree of orientational order than the “inner” surface.
That happens because the “inner” surface is more curved. Membrane regions with a higher
absolute value of the Gaussian curvature always have a lower degree of orientational order.
Regions of a vesicle membrane with small absolute values of Gaussian curvature have a higher
degree of orientational order. Defects and antidefects are membrane points with a very low
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degree of order, so it is not energetically favorable for them to be located in these places. As we
can observe in figure 2 and figure 3, defects and antidefects always appeared in the membrane
regions with high absolute values of the Gaussian curvature.

4. Conclusions
Closed biological membranes (vesicles) were considered within the spontaneous curvature model.
The membrane bending energy minimization was performed to obtain ground state (zero
temperature) vesicle shapes, while the Monte Carlo simulations of randomly triangulated
surfaces were used to obtain membrane configurations in the thermal equilibrium (non-zero
temperature). The obtained configurations, using the two approaches, correspond well with each
other. In Monte Carlo simulations we did not fix the volume of the vesicle, as in the ground state
calculations. Instead of that we imposed pressure difference between both membrane sides to
generate vesicles with different average volumes. The vesicle had spent a relatively long “time”
in the metastable oblate/discocyte state, but it later reached the equilibrium stomatocyte state,
since the thermal fluctuations overcame the energy barrier. The backward transition was not
observed, indicating that the stomatocyte state, if obtained, has a lower mean energy than the
metastable oblate state.

The nematic ordering in oblate and stomatocyte vesicle membranes was also studied. In
both cases it was confirmed that the net topological charge on surfaces with the topology of a
sphere is equal 2. On an oblate vesicle, we calculated the equilibrium configuration with four
topological defects, each with charge 1/2, assembled in a region exhibiting highest Gaussian
curvature. On a stomatocyte vesicle we observed six topological defects (each with charge 1/2)
and two topological antidefects (each with charge −1/2). The latter assembled in the region with
negative Gaussian curvature. The position of topological defects is strongly curvature dependent
and can be controlled by changing the vesicle curvature.
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