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Monte Carlo simulations are employed to investigate the ability of a charged fluidlike vesicle to
adhere to and encapsulate an oppositely charged spherical colloidal particle. The vesicle contains
mobile charges that interact with the colloid and among themselves through a screened electrostatic
potential. Both migration of charges on the vesicle surface and elastic deformations of the vesicle
contribute to the optimization of the vesicle-colloid interaction. Our Monte Carlo simulations reveal
a discontinuous wrapping transition of the colloid as a function of the number of charges on the
vesicle. Upon reducing the bending stiffness of the vesicle, the transition terminates in a critical
point. At large electrostatic screening length we find a reentrant wrapping-unwrapping behavior
upon increasing the total number of charges on the vesicle. We present a simple phenomenological
model that qualitatively captures some features of the wrapping transition. © 2009 American
Institute of Physics. �doi:10.1063/1.3191782�

I. INTRODUCTION

Cellular membranes serve as a permeability barrier to
large water-soluble macroions. However, intra- and extracel-
lular transport of such macroions is still possible by a dy-
namic membrane remodeling that generally involves mem-
brane bending deformations. In some cases, such as receptor-
mediated endocytosis, the membrane deformation is tightly
regulated by a molecular machinery and requires a metabolic
energy source. For example, clathrin-mediated endocytosis
relies on the auxiliary protein clathrin to control the size of
the coated transport vesicles. In other cases, the membrane
deformation progresses passively, i.e., without employing an
additional energy source, driven solely by the interaction be-
tween the membrane and the macroion. Examples include
the viral budding of newly formed virions out of their host
cells1 and the transfer of drug delivery vehicles into cells.
Liposomes often serve as such vehicles for encapsulated
material.2 For example, it has been reported that small cat-
ionic liposomes attach to negatively charged membranes and
induce strong local membrane bending, resulting in liposome
encapsulation.3 Of interest is also the nonviral entry of ge-
netic material into cells based on self-assembled condensed
complexes of DNA with a carrier material. To form suffi-
ciently compact aggregates, DNA can be complexed with
cationic lipids or cationic polymers; both cases result in posi-
tively charged condensates that electrostatically interact with
the plasma membrane4 and are typically internalized in a
nonspecific manner �i.e., by macropinocytosis�. Note that all
these transport mechanisms involve, at some stage, a curved
membrane that engulfs a charged colloidal particle, lipo-
some, or aggregate.

Colloidal particles enveloped by lipid membranes also
have promising biotechnological applications, including their

use as analytical essays and biofunctionalized surfaces.5

However, stability of the lipid shell often limits the control of
surface properties. Recent research efforts have therefore
been directed toward introducing chemical modifications that
improve the stability of lipid-coated colloidal particles. In
addition, physical properties such as the surface topography
and particle sizes contribute to the properties of membrane-
colloid complexes. Understanding the interplay of the vari-
ous energy contributions, including elastic and electrostatic
energies of the colloid-membrane complexes, is a prerequi-
site for improving complex stability.

The wrapping of colloidal particles by fluid membranes
has been considered in previous theoretical studies. Harries
et al.6 used the nonlinear Poisson–Boltzmann model to in-
vestigate the enveloping of charged proteins by initially pla-
nar lipid membranes, thereby accounting for the protein-
induced demixing of the charged lipids in a binary
membrane. A comparison of the free energies corresponding
to the fully wrapped and unwrapped states suggested that
wrapping occurs only above a critical protein charge. That
critical protein charge is compatible with the number of
charges typically contained in membrane-penetrating peptide
shuttles. In another study, Fleck and Netz7 modeled the elec-
trostatic colloid-membrane binding by minimizing the free
energy of a homogeneously charged membrane with respect
to the membrane shape using the screened Debye–Hückel
potential. The authors found a reentrant unwrapping behav-
ior, where small and large salt concentrations lead to a small
degree of wrapping. This occurs because for large salt con-
centration electrostatic screening reduces the membrane-
colloid interaction, whereas for small salt concentrations un-
wrapping is due to the self-energy of the membrane. For
intermediate salt concentrations, however, wrapping be-
comes almost complete. In a series of studies, Deserno and
co-worker8–10 analyzed the engulfment of colloids by mem-a�Electronic mail: miha.fosnaric@fe.uni-lj.si.
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branes in the presence of a short-ranged �adhesive� interac-
tion potential. In this case, the deformation of an initially flat
membrane is determined by an interplay of bending energy
and interfacial tension, and the wrapping transition is gener-
ally predicted to proceed discontinuously, jumping from a
partially to a completely wrapped binding state of the col-
loid. If the membrane contains a binary mixture of lipids
with opposite spontaneous curvatures, wrapping will be fa-
cilitated by local lipid demixing.11 Demixing is also impor-
tant if a colloidal particle binds to mobile adhesion sites as is
the case in the receptor-mediated uptake of viruses.12 The
cellular entry of viruses through the endocytotic pathway
provides a major motivation to refine models of colloid-
membrane complexes.13,14 Simulations of colloid engulfment
by membranes have been performed using dissipative par-
ticle dynamics15 and a solvent-free coarse-grained membrane
model.16

In this work we present the Monte Carlo simulations of
electrostatically driven colloid adhesion and wrapping by a
fluid binary vesicle. We represent the vesicle by a randomly
triangulated surface, and we use the linear Debye–Hückel
potential to describe electrostatic interactions. The vesicle
and colloid contain opposite charges; those attached to the
colloid are immobile, whereas the vesicle charges are able to
diffuse within the vesicle’s surface. When interacting with
the colloid, the vesicle is thus able to optimize both its shape
and charge distribution. Our objective is to characterize the
wrapping transition in terms of the electrostatic screening
strength and vesicle bending stiffness. In addition, we briefly
investigate the coupling between composition and spontane-
ous curvature of the vesicle by assigning to the mobile
charges on the vesicle a preferential curvature. Our compu-
tational investigations are complemented by a minimal phe-
nomenological model. The model correctly predicts the
wrapping transition to be discontinuous, although it fails to
provide a quantitative description.

II. THEORETICAL MODEL

We consider the electrostatic interaction between a
closed fluidlike vesicle and a single spherical colloid. The
vesicle is flexible and contains mobile charges; it is thus able
to adjust both shape and charge distribution in order to opti-
mize the interaction with the oppositely charged rigid col-
loid. We model the vesicle as a triangulated surface that con-
tains a fixed number N of vertices of which M vertices are
charged. That is, a fraction �=M /N of all vertices carry a
single negative charge; the remaining vertices are uncharged.
The colloid is located outside the vesicle and is represented
by a sphere of fixed radius Rcoll with a given surface charge
density �coll. Both the vesicle and the colloid are embedded
in an aqueous solution of uniform dielectric constant �, bulk
concentration n0 of monovalent salt, and fixed temperature T.
It is convenient to express � and n0 in terms of the Bjerrum
length lB=e2 / �4���0kT� and Debye screening length
lD= �8�lBn0�−1/2, respectively, where e denotes the elemen-
tary charge, �0 is the vacuum permittivity, and k is
Boltzmann’s constant.

In the present work we model electrostatic interactions

conveniently using the linear �Debye–Hückel� screening ap-
proximation, which leads to the effective pair potential
u�r�= � �lB /r�exp�−r / lD� between any two given elementary
charges that are separated by distance r. The plus and minus
signs correspond to like and unlike charges, respectively.
Note that the linear screening approximation neglects
charge-charge correlations of the ions in solution, which is
strictly valid only in the limit of small electrostatic potential
� �i.e., when e��kT�. The use of the linear screening ap-
proximation in the present study is still appropriate because
we are concerned with the interaction of oppositely charged
macroions. Charge-charge correlations are not expected to
qualitatively alter the nature of the attraction between the
vesicle and the oppositely charged colloid.

The energy H of any given microstate of the colloid-
vesicle complex consists of two contributions, the bending
energy of the vesicle and the total electrostatic energy. The
two terms can be written as

H =
�

2
�

A

ds�c1 + c2�2 +
kT

2 �
i,j

u��ri − r j�� , �1�

where the first part accounts for the bending energy;17 � is
the bending stiffness and the integration runs over the sur-
face of the closed vesicle with c1+c2 being the sum of the
local principal curvatures. The second part—the electrostatic
contribution—is a sum over all elementary charges located at
distinct positions ri and rj. Note that the electrostatic self-
energy of the rigid colloid is constant �and can thus be omit-
ted�. However, the electrostatic self-energy of the vesicle de-
pends on both shape and charge distribution and can
therefore not be ignored.

A. Monte Carlo simulations

To study the equilibrium conformations of the colloid-
vesicle system we employ a Monte Carlo simulation method.
The vesicle is represented by a set of N vertices that are
linked by tethers of flexible length l so as to form a closed,
randomly triangulated, self-avoiding network.18 The lengths
of the tethers can vary between a minimal �lmin� and a maxi-
mal �lmax� value. This model has been used previously to
study shapes and fluctuations of one-component19,20 and
two-component21–23 vesicles. Membrane fluidity is main-
tained by flipping bonds within the triangulated network. A
single bond flip involves the four vertices of two neighboring
triangles. The tether between two vertices is cut and reestab-
lished between the other previously unconnected two verti-
ces. A Monte Carlo step involves attempted changes in ver-
tex positions and bond flips, as described below. Note that
the fluidity of the vesicle allows the lateral �in-plane� redis-
tribution of the vertices for any given vesicle shape. In addi-
tion, the �out-of-plane� positional freedom of the N vertices
enables the vesicle to adjust its shape. Hence, the interaction
of the vesicle with the oppositely charged colloid will be
optimized with respect to both the vesicle shape and distri-
bution of charged vertices.

The choice for the maximum tether length
lmax=1.68lmin ensures self-avoidance of the network. It is
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convenient to use lmin as our unit length and to express all
lengths in terms of lmin. The following system parameters are
adopted in our simulations: Rcoll=3 �radius of the colloid�,
lB=1 �Bjerrum length�, and hmin=0.5 �minimal distance be-
tween any given vertex and the surface of the colloid�. In
addition, the spherical colloid carries Ncoll=65 uniformly dis-
tributed, pointlike, positive charges of valence Zcoll=+2 on
its surface. Our vesicle consists of N=1447 vertices �forming
2�N−2�=2890 triangles�, of which a fraction � is negatively
charged with valence Z=1. The three parameters we have
varied in our simulations are the total number M of charged
vertices on the vesicle, the Debye screening length lD, and
the bending stiffness �.

The minimal cross-sectional area per vertex correspond-
ing to l= lmin=1 is amin�	3 /2�0.87. The average cross-
sectional area per vertex a is significantly larger than the
minimal one, a	amin. A rough estimate of a may be based
on the assumption that all tether lengths �with 1
 l
1.68�
are adopted with the same probability, implying a�1.5. This
estimate is supported by our Monte Carlo simulations as dis-
cussed below. The total vesicle area is A=aN=2170,
corresponding to a sphere of radius R=13.1. The ratio be-
tween the area A of the vesicle and the area Acoll=4�Rcoll

2 of
the colloid is therefore A /Acoll=19.2. We also note that the
average cross-sectional area per unit charge on the colloid
acoll=4�Rcoll

2 / �ZcollNcoll��0.87 is equal to amin.
As introduced in Eq. �1�, the energy H of a given mi-

crostate of the colloid-vesicle complex is the sum of the
bending and electrostatic energies. For the numerical calcu-
lation of the bending energy of a triangulated surface, see
Sec. II in Ref. 24 or Eq. 70 in Ref. 18. In our Monte Carlo
simulations, the microstates of the colloid-vesicle complex
are sampled according to the Metropolis algorithm. Evolu-
tion of the system is measured in millions of Monte Carlo
steps �Mmcs�. One Monte Carlo step consists of separate
attempts to displace each of the N vertices by a random
increment in the cube �−s ,s�3, followed by N attempts to flip
a randomly chosen bond. We chose s=0.15 so that approxi-
mately 50% of vertex displacements were successful. We
have typically used about 1 Mmcs to measure thermal aver-
ages after reaching equilibrium.

B. Phenomenological model

To interpret our computational findings, we construct a
minimal phenomenological two-state model for the wrapping
of the colloid by the vesicle. We distinguish between two
regions of the vesicle. The first region �indexed c—colloid�
realizes the partial wrapping of the colloid; its shape is as-
sumed to be the section of a sphere. The second region �in-
dexed b—bulk� does not contribute to the wrapping; its
shape is free to adjust. We shall refer to the two regions as
wrapping and nonwrapping regions.

The areas of the wrapping and nonwrapping regions are
Ac and Ab=A−Ac, respectively; we denote the corresponding
area fractions by �c=Ac /A and �b=Ab /A. The maximal
vesicle area that can participate in the wrapping is
Ac

max=4�Rc
2. Here Rc=Rcoll+h denotes the radius of curva-

ture of the colloid-wrapping vesicle region �which also ac-

counts for a nonvanishing distance h�hmin of closest ap-
proach between vesicle and colloid�. Clearly, Ac=Ac

max

corresponds to the fully wrapped colloid. Intermediate �i.e.,
partially wrapped� states can be described conveniently by
the wrapping parameter


 = Ac/Ac
max = �cA/Ac

max, 0 
 
 
 1. �2�

Each of the two vesicle regions, wrapping and nonwrapping,
can be characterized by its number of charged vertices,
denoted by Mc and Mb=M −Mc, and by the total number
of vertices, Nc and Nb=N−Nc, respectively. The correspond-
ing compositions �i.e., fractions of charged vertices� are
�c=Mc /Nc and �b=Mb /Nc. We thus have the charge conser-
vation condition �c�c /ac+�b�b /ab=� /a, where ac=Ac /Nc

and ab=Ab /Nb denote the average cross-sectional areas per
vertex in the wrapping and nonwrapping vesicle regions, re-
spectively.

Our phenomenological model makes a number of sim-
plifying assumptions: �i� fluctuations of the vesicle shape are
neglected, only the ground state energy is retained; �ii� com-
positions in both the wrapping and nonwrapping regions are
uniform, and the mixing is ideal; �iii� the vesicle is laterally
incompressible, implying ac=ab=a; �iv� the electrostatic en-
ergy of the nonwrapping vesicle region is described by that
of a planar charged surface with surface charge density
−e�b /ab; �v� the electrostatic energy of the wrapping vesicle

region is described by a circular flat surface of radius R̄c and
surface charge density −e�c /ac; �vi� only charges within the
wrapping region interact with the colloid, where electrostatic
interactions are approximated as with a flat surface at fixed
distance h�hmin away; and �vii� only bending elasticity, but
not electrostatics, determines the vesicle shape of the non-
wrapping region. The last of these assumptions can be justi-
fied because the electrostatic contribution to the bending
stiffness is small.25 We emphasize, however, that our set of
assumptions is introduced phenomenologically, serving the
major purpose to keep the model simple.

We decompose the phenomenological free energy of the
colloid-vesicle complex F=Fmix+Felec+Fbend into mixing,
electrostatic, and bending contributions. Our assumptions
outlined above significantly simplify the calculation of each
individual contribution. Specifically, the mixing contribution

Fmix = N��cfmix��c� + �bfmix��b�� �3�

can be expressed in terms of the ideal mixing free energy
fmix�x� /kT=x ln x+ �1−x�ln�1−x� per vertex.

The electrostatic contribution to the total free energy

Felec = N��cfelec
�c� ��c� + �bfelec

�b� ��b�� �4�

contains the two expressions

felec
�c�

kT
= p0�Z2�c

2g�R̄c� − 2ZZcoll�c�colle
−h/lD� �5�

and
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felec
�b�

kT
= p0Z2�b

2, �6�

which represent the electrostatic energies per vertex of the
wrapping and nonwrapping regions, respectively. The first
part on the right-hand side �rhs� of Eq. �5�, namely,

p0Z2�c
2g�R̄c�, describes the electrostatic self-energy per ver-

tex in the wrapping region. Here, p0=�lBlD /a is a constant,
and the function26,27

g�R̄c� = 2�
0

� dk

k

J1
2�kR̄c�

	1 + �klD�2
�7�

accounts for the finite size of the wrapping region, which we
model as a flat surface of circular shape with radius

R̄c=	
Ac
max /�. J1�x� is the Bessel function of the first kind,

and thus g�R̄c� is a monotonically increasing function with

g�R̄c=0�=0 and g�R̄c→��=1. The second part on the rhs of
Eq. �5�, namely, −2ZZcoll�c�coll exp�−h / lD�, accounts for the
electrostatic interaction free energy of a given vertex in the
wrapping region with the colloid, modeled as a flat large
surface at a distance h	hmin=0.5 away. The magnitude
h=0.64 has been determined from our simulations, see be-
low. Finally, felec

�b� in Eq. �6� represents the electrostatic self-
energy per vertex in the nonwrapping region. No additional
factor g, analogous to Eq. �7�, is needed since we only con-
sider vesicles considerably larger than the Debye length.

The final contribution Fbend= �� /2�
Ads�c1+c2�2 is the
elastic energy of bending. � is the nonelectrostatic contribu-
tion to the bending stiffness; the electrostatic contribution is
neglected as pointed out above. The vesicle forms a spherical
cap in the colloid-wrapping region; the corresponding elastic
energy is 8��
. In the nonwrapping region, the contribution
to the bending energy is 8�� for both 
=0 and 
=1. Hence
Fbend / �8���=1 for 
=0 and Fbend / �8���=2 for 
=1. Cal-
culation of the energy Fbend for intermediate 
 is based on
optimizing the shape of an axisymmetric vesicle of fixed area
A in the ground state. The corresponding shape equations are
stated in the Appendix. Note that our minimization neither
constrains the volume enclosed in the vesicle �see Ref. 28 for
numerical shape optimization at fixed volume� nor accounts
for the so-called area difference elasticity.29 The behavior of
Fbend�
� depends only on the ratio R /Rc. Figure 1 displays a
number of numerical results for Fbend�
�. Included is a curve
for the specific choices R=13.1 and Rc=3.64, which corre-
sponds to our Monte Carlo simulations and is thus used in
our phenomenological model. Vesicle shapes corresponding
to 
=0.15, 
=0.5, and 
=0.975 are shown in Fig. 2 below.
Note that in the limit R�Rc the bending energy is
Fbend=8���1+
�. In this case, the excess deformation of the
vesicle in the nonwrapping region is catenoidlike and thus
does not imply an additional energy penalty.

Our phenomenological model describes the free energy
of the colloid-vesicle complex in terms of �b, �c, �b, and �c

�or, instead of �c, equivalently by 
; see Eq. �2��. With the
two conservation conditions �c�c+�b�b=� and �c+�b=1,
this leaves two degrees of freedom which we chose to be 

and �c. The phenomenological free energy F=F�
 ,�c�
adopts the global minimum with respect to these two degrees
of freedom. We have determined this minimum numerically.

III. RESULTS AND DISCUSSION

Recall that apart from the number of charged vertices M
�or, equivalently, fraction of charged vertices ��, Debye
screening length lD, and bending stiffness �, all parameters
of the system have been specified. We describe the degree of
wrapping as a function of M for different lD and �.

Figure 2 illustrates a number of typical conformations of
the colloid-vesicle complex as obtained by the Monte Carlo
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FIG. 1. Bending free energy Fbend of a vesicle that partially wraps a spheri-
cal colloid of effective radius Rc=Rcoll+h plotted as a function of the wrap-
ping parameter 
. The surface area of the vesicle A=4�R2 corresponds to a
sphere of radius R. The method to calculate Fbend is outlined in the Appen-
dix. The Monte Carlo simulations of the present work all correspond to the
case R=13.1 and Rc=3.64.

FIG. 2. The wrapping of a colloid �radius Rcoll=3� by a vesicle �which, if spherical, would have a radius of R=13.1�. Left: snapshots of representative
colloid-vesicle configurations obtained from simulations for different numbers of charged vertices on the membrane: M =15, M =60, and M =150 �from left
to right�. The shape of the vesicle is represented by a triangulated surface; mobile charges on the vesicle and fixed charges on the colloid are indicated by dots.
Right: cross sections of colloid-vesicle complexes obtained by minimizing the bending energy of the vesicle �see Appendix� for different values of the
wrapping parameter 
.
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simulations. The three complexes correspond to M =15,
M =60, and M =150 �from left to right�, all simulated for
lD=3 and �=10kT. For all three simulations we have mea-
sured the wrapping parameter 
. �Note that in our simula-
tions a vertex is taken to reside within the wrapping region if
its distance from the colloid is less than 1.5, measured in our
unit length lmin. We then calculated the corresponding vesicle
shapes using our phenomenological model �thus minimizing
Fbend��. Cross sections of the resulting vesicle shapes are
displayed in the right diagram of Fig. 2.

The snapshots of the Monte Carlo simulations in Fig. 2
indicate an interplay between the degree of wrapping and
charge segregation on the vesicle surface. All charges are
sequestered close to the colloid for M =15; the colloid is
adsorbed to the vesicle, but the degree of wrapping is small
�
=0.15�. The choice M =60 corresponds to almost half the
number ZcollNcoll=2�65=130 of elementary charges on the
colloid. With nearly complete segregation of charged and
uncharged vertices, this suggests a wrapping parameter

=1 /2 for M =60. Note that very few charges appear to have
escaped the membrane-wrapping region due to thermal fluc-
tuations; these charges move essentially unrestricted within
the nonwrapping part of the vesicle surface. Finally, for
M =150 the vesicle charge overcompensates that on the col-
loid, leading to complete wrapping and a residual fraction of
charged vertices on the nonwrapping part of the vesicle
surface.

To study whether the transition from small to large de-
grees of wrapping is discontinuous, we performed simula-
tions for various M, all at fixed Debye length lD=3 and
bending stiffness �=10kT. Figure 3 displays the number Nc

of vertices in the wrapping region and—in the inset—the
corresponding number of charged vertices Mc in the wrap-
ping region, both plotted as a function of the total number of
charged vertices M or, equivalently, as a function of the com-
position �=M /N. The right axis in Fig. 3 indicates the wrap-
ping parameter 
=Nca /Ac

max with Ac
max=4��Rcoll+h�. Here

the distance h=0.64 is chosen so as to match the maximal
wrapping parameter 
=1 to the case of complete wrapping

in the simulations. We have also reproduced the value
h=0.64 by measuring the colloid-to-vesicle distance in the
wrapped region for different simulations. Note that due to
thermal fluctuations h=0.64 is somewhat larger than
hmin=0.5.

The two different sets of symbols in Fig. 3 correspond to
two sets of Monte Carlo simulation runs with different initial
states, one fully unwrapped �⊳ � and the other fully wrapped
�⊲ �. No hysteresis is observed which indicates the absence of
two distinct minimum states �weakly and fully wrapped� that
are separated by a barrier much larger than the thermal en-
ergy. At about �=0.04 there is a discontinuous wrapping
transition in qualitative agreement with the predictions of
corresponding elasticity models.10 Electrostatic interactions
are strong enough to draw almost every charged vertex into
the wrapping region, as shown in the inset of Fig. 3. Hence,
the number of charged vertices in the wrapping region
changes continuously; Mc�M. What changes discontinu-
ously during the wrapping transition is the number of un-
charged vertices. Thus, the wrapping transition mainly in-
volves a dilution of charges in the wrapping region.

The dashed line in Fig. 3 marks the prediction of our
phenomenological model. As in the simulations, a discon-
tinuous wrapping transition is predicted, although at signifi-
cantly smaller M. We bring forward two major reasons for
this difference. First, the discretized structure of the vesicle
in the simulations leads to a wider neck at larger wrapping
parameters than predicted by the phenomenological model.
The corresponding additional energy cost of the �discretized�
vesicle neck disfavors large wrapping and thus delays the
wrapping transition in the simulations. Second, in the Monte
Carlo simulations, some charged vertices reside close to the
colloid without entering the wrapping region. The favorable
electrostatic interaction of these charged vertices with the
colloid �which does not require an increase in 
� is ignored
in the phenomenological �two-state� model. Hence, wrapping
in the simulations tends to be less pronounced than in the
two-state model. We note that the presence of a discontinu-
ous wrapping transition in our phenomenological model
depends crucially on the nonlinear behavior of the bending
energy Fbend�
� in Fig. 1. Using the linear function
Fbend=8���1+
�, which is valid in the limit of a small col-
loid �Rc�R�, would eliminate the discontinuity of the wrap-
ping. It is less important to account for the finite size of the
wrapping region in calculating the electrostatic self-energy.

Setting g�R̄c��1 in Eq. �5� would preserve the discontinuity
of the wrapping, but the transition would be shifted to even
smaller �.

Our next set of simulations was carried out for a Debye
length of lD=1. Decreasing lD corresponds to an increase in
electrostatic screening and thus to weaker electrostatic inter-
actions. Consequently, a larger number M of charged vertices
is required to wrap the colloid. Results from our simulations
and phenomenological model are displayed in Fig. 4. Again,
as in Fig. 3, the two sets of symbols correspond to results of
simulation runs with fully unwrapped �⊳ � and fully wrapped
�⊲ � initial states of the colloid-vesicle complex. In contrast
to Fig. 3, the simulation results in Fig. 4 exhibit hysteresis.
Simulation runs starting from the fully unwrapped initial
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FIG. 3. Number of vertices in the wrapping region Nc as a function of the
total number M of charged vertices in the vesicle. Results from Monte Carlo
simulations are marked by the symbols ⊳ and ⊲, corresponding to fully
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tively. At about �=0.04 a discontinuous wrapping transition occurs. The
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shows the number of charged vertices in the wrapping region Mc. All results
correspond to lD=3 and �=10kT.
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state �symbol ⊳ in Fig. 4� lead to a wrapping transition at
M �1200. On the other hand, when starting from the fully
wrapped state �symbol ⊲ in Fig. 4�, the unwrapping transition
takes place at M �800. Apparently, two local minimum
states exist that are separated by a large energy barrier. For
lD=1 the wrapping transition is more pronounced than for
lD=3; i.e., the initial and final states of the transition
correspond to almost vanishing and complete wrapping,
respectively.

Some, but not all, of our computational findings for
lD=1 �see Fig. 4� are reproduced by the phenomenological
model. The model does predict two minima of the free en-
ergy, one for small degree of wrapping �indicated by the
dashed line in Fig. 4� and the other for full wrapping �see the
horizontal solid line in Fig. 4 at 
=1�. The free energies
corresponding to the two local minima are displayed in the
inset of Fig. 4. At about M =Mcrit=500 both minima have the
same free energy �marked by the vertical dotted line in Fig.
4�. For M �Mcrit the almost completely unwrapped state is
thermodynamically stable; M 	Mcrit implies stability of the
fully wrapped colloid. Although the phenomenological
model correctly predicts the presence of a pronounced dis-
continuous wrapping transition, it cannot reproduce its quan-
titative features. It is also worth pointing out that in the
weakly wrapped regime the simulations predict a notable
�and nearly linearly increasing� degree of wrapping as func-
tion of M, reaching almost 
=0.4 for M =1200. In compari-
son, the degree of wrapping predicted by the phenomeno-
logical model is almost negligible. This is especially
interesting because for lD=3 �discussed above; see Fig. 3�
the phenomenological model overestimates 
 in the weakly
wrapped regime. The underestimation of 
 for lD=1 may
result from our model’s assumption that the wrapping region
adopts the shape of a spherical cap of fixed radius Rcoll+h. In
the simulations, the membrane shape fluctuates, allowing
vesicle configurations with lower bending energy, but with
charged vertices still close to the vesicle.

We have also carried out a set of simulations for large
Debye lengths, namely, lD=10. The results are displayed in
Fig. 5. Also shown �dashed line� is the prediction of our
phenomenological model. Two features are notable. First, the
large Debye length only moderately affects the wrapping
transition as compared to lD=3 �see Fig. 3�. That is, we ob-
serve a discontinuous wrapping transition at about M =55
with Nc jumping from 70 to 100; the phenomenological
model also predicts this transition at M =30 from Nc=45 to
Nc=95. Second, increasing M beyond the wrapping transi-
tion leads to an initial increase in Nc followed by a substan-
tial decrease. The wrapping parameter corresponding to the
maximal value of Nc is found to be larger than 
=1. This is
a consequence of our assumption that the cross-sectional area
per vertex ac=a in the definition of the wrapping parameter

=Ncac /4�Rc is a constant. However, in our simulations we
observe a decrease in ac. Specifically, at M =400 the cross-
sectional area per vertex ac is about 10% smaller than that in
the bulk region of the vesicle. Hence, additional vertices can
be accommodated into the wrapping region, which allows for

	1. For even larger M, the degree of wrapping decreases;
a representative colloid-vesicle complex corresponding to
M =1200 is shown in the inset of Fig. 5. The gradual un-
wrapping for large lD and M is the result of electrostatic
repulsion within the vesicle neck. Indeed, for a similar
system—the ground state of a homogeneously charged
colloid-membrane complex at large lD—unwrapping has
been predicted by Fleck and Netz.7

Consider now changing the bending stiffness � of the
vesicle at fixed Debye length lD=3. In Fig. 3 we have al-
ready observed that a discontinuous wrapping transition
takes place for �=10kT at about M =Mcrit=60. In Fig. 6 we
show that the number Mcrit increases linearly with the bend-
ing stiffness. That is, more charged vertices are needed to
induce the wrapping transition of a stiffer membrane. How-
ever, for decreasing bending stiffness �at about �=3kT� the
wrapping transition terminates in a critical point. The pres-
ence of a critical point can also be seen in the inset of Fig. 6,
which shows the free energy as a function of Nc at the wrap-

0 200 400 600 800 1000 1200

0 0.2 0.4 0.6 0.8

20

40

60

80

100

120

0.0

0.2

0.4

0.6

0.8

1.0

�

�

� � � � �

..........
.... ......

..........
..........

......
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
........ .... ...... .. ...... ...... .. ...... ...... .. ........ .. ...... .. ......

�
������ � � � � � � �

�
� �

�

........
........
..........

...................... ........ ........ ........ ......
.. ........ ........

........ ........ ........ ........ ........ ........
........ ........ ........ ........ ........ ........

........ ........ .....
... ........ ........

........ ........ ....
.... ........ ........

........ ........
........ ........

........ ........ ...
..... ........ ........ ........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........
........ ........ ........

........ ......
.......
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Nc

M

φ

λ

lD = 1

0 500 1000

0

1000

2000

........................ ........ ........ ........ ......
..........

........
........
........
........
........
........
........
..

.................................................................................................
....................

..............
..............
............
.............
...........
..........
...........
...........
...........
.........
..........
..........
........

F/kT

M
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tical dotted line in the main figure� both states have the same free energy. All
results correspond to lD=1 and �=10kT.
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ping transition �corresponding to M =Mcrit� derived from the
simulations. Specifically, for three different bending stiff-
nesses �marked by A, B, and C� we have identified
M =Mcrit and then measured the probability p�Nc� to find a
certain degree of wrapping as expressed by the number Nc of
vertices in the wrapped region. The corresponding change in
free energy F−F0=−kT ln p displayed in the inset of Fig. 6
exhibits two minima for large bending stiffness �A and B�,
which have merged into a single minimum for �=3kT �curve
C�. The height of the barrier that separates the two minima
grows with increasing � but is still comparable to the thermal
energy kT at �=10kT. This is consistent with the absence of
hysteresis in Fig. 3. We have also calculated Mcrit��� from
our phenomenological model, see the dashed line in Fig. 6.
Note that the phenomenological model does not predict a
critical point. This is because membrane undulations are not
taken into account in the phenomenological model and even
a small energy barrier is enough to separate partially and the
fully wrapped energy states.

We finally consider the influence of an additional non-
electrostatic composition-curvature coupling of the vesicle.
To this end, we assume that the charged vertices �but not the
uncharged vertices� possess a nonvanishing preferential in-
trinsic curvature c0.30,31 The presence of a composition-
dependent spontaneous curvature of the vesicle can be de-
scribed by adding the term

− c0��
A

ds��c1 + c2� �8�

to the energy expression H of any given microstate in Eq.
�1�. It is �=1 if the lateral area corresponding to a given
vertex is charged and �=0 if it is uncharged. Hence, only
charged vertices contribute to the integration over the surface
of the triangulated vesicle. We note that Eq. �8� is based on
the assumption that the spontaneous curvature of the mixed
membrane �c0 depends linearly on composition; such an as-
sumption finds support by comparison of model calculations
with experimental studies32 and with molecular lipid

models.33 Depending on the sign of c0 wrapping of the col-
loid by charged vertices will either be favored �for c0�0� or
disfavored �for c0	0�. We have carried out simulations for
both cases, assuming the magnitude of the spontaneous cur-
vature to be �c0�=2 /Rcoll. Simulation results are shown in
Fig. 7. For preferential matching of charged vertices with the
colloid c0=−2 /Rcoll �corresponding to the symbol � in Fig.
7�, we observe enhanced degree of wrapping as compared to
the case c0=0. That is, a more pronounced discontinuous
wrapping transition occurs at smaller M; compare Mcrit=40
for c0=−2 /Rcoll to Mcrit=60 for c0=0. In the opposite case,
for c0=+2 /Rcoll �corresponding to the symbol � in Fig. 7�,
charged vertices in the wrapping region are penalized. This
completely eliminates the wrapping transition. Instead, for
large M, we observe a nonaxisymmetric clamplike configu-
ration such as that displayed in Fig. 7.

IV. CONCLUSIONS

In this work we have presented Monte Carlo simulations
of a fluid vesicle that internalizes a spherical colloid by a
wrapping process. The wrapping is driven by screened elec-
trostatic interactions between the colloid and the oppositely
charged vesicle. Only a fraction � of the vesicle’s mobile
vertices are charged. Hence, the engulfment of the colloid is
coupled to the lateral segregation of vesicle charges. The
present Monte Carlo simulations complement the preceding
investigations of colloid wrapping by fluid membranes based
on various other methods, as discussed in Sec. I.

Here, we summarize our major findings. As predicted for
colloids that interact with a membrane by a short-ranged ad-
hesive potential,8–10 our system typically exhibits a discon-
tinuous wrapping transition from a partial to complete �or
almost complete� degree of wrapping. The two energetically
preferred states, partially and completely wrapped, can be
separated by an energy barrier significantly larger than the
thermal energy kT, implying the observation of hysteresis in
our simulations. If the electrostatic screening length lD is
increased, the transition shifts to smaller � and becomes
weaker, i.e., with a smaller energy barrier and no hysteresis.
We also observe a reentrant wrapping-unwrapping behavior
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for large lD upon increasing �. This behavior has been pre-
dicted previously by Fleck and Netz7 for a uniformly charged
membrane. Decreasing the bending stiffness of the vesicle
weakens the wrapping transition until a critical point is
reached beyond which the wrapping becomes a continuous
process. Finally, the wrapping transition shifts to smaller � if
the charged vertices possess a spontaneous curvature that
matches the curvature of the colloid. In the opposite case,
when the spontaneous curvature of the charged vertices is
opposite to the curvature of the colloid, the wrapping is a
continuous process. Interestingly, the preferred shape of the
vesicle then becomes clamplike and nonaxisymmetric.

To facilitate the discussion of our computational find-
ings, we have suggested a minimal phenomenological model.
The corresponding free energy of the colloid-vesicle com-
plex contains a demixing, electrostatic, and bending contri-
bution, all calculated using a significant number of simplify-
ing assumptions. Still, our model is able to recapture the
discontinuity of the wrapping transition, although without
achieving quantitative agreement with our simulation results.

The engulfment of a colloidal particle by a fluid mem-
brane is a fundamental process with relevance to cellular
drug uptake, viral budding, and biotechnological applica-
tions. As in previous modeling studies, the present simula-
tions adopt drastic simplifications in order to extract generic
features of the wrapping process. These include the use of a
screened electrostatic �i.e., Yukawa� potential, which ignores
correlations and overestimates electrostatic interactions as
compared to nonlinear Poisson–Boltzmann theory. More-
over, spatial variations in the dielectric constant are not ac-
counted for in the present model. Finally, the triangulated
surface model neglects the molecular structure of the vesi-
cle’s constituents and ignores the possibility of topological
changes. On the other hand, our simulations go beyond pre-
vious phenomenological models by accounting for thermal
fluctuations and for the lateral mobility of the charged verti-
ces. It is thus notable that previous predictions, such as the
discontinuous nature of the wrapping transition or the reen-

trant wrapping-unwrapping process for large screening
lengths, agree with the findings of the present work.
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APPENDIX: SHAPE EQUATIONS

We consider an axisymmetric vesicle that adopts the
shape of a spherical cap in the colloid-wrapping region. Fig-
ure 8 displays a cross section of the colloid-vesicle complex.
It is convenient to describe the vesicle shape as a function of
the contour length s of the vesicle’s cross section using the
distance �=��s� to the axis of symmetry and the angle
�=��s� between the normal of the vesicle surface and the
axis of symmetry. The two principal curvatures of the vesicle
are the c1=d� /ds and c2=sin � /�. The bending energy of
the vesicle can thus be written as

Fbend = 8��
 + 2�
�

2
� �d�

ds
+

sin �

�

2

�ds , �A1�

where the two contributions account for the wrapped and
unwrapped regions of the vesicle; � is the bending stiffness
and 
 is the degree of wrapping. We seek to minimize the
functional

S =
Fbend

8��
+


a

2
� �ds +� 
s�s��d�

ds
− cos �
ds , �A2�

where 
a and 
s�s� are Lagrangian multipliers. The first one

a ensures conservation of the area Ab=2�
�ds of the un-
wrapped �bare� vesicle region. The second multiplier 
s�s�
enforces the geometric relation cos �=d� /ds. The Euler–
Lagrange �shape� equations corresponding to S can be writ-
ten as

�� = cos � ,

�� = �/� ,

�A3�
�� = sin � cos �/� + 4
s sin � ,


s� = ��2 − sin 2��/�8�2� + 
a/2,

where the prime denotes the first derivative with respect
to s and where we have defined the function �=���.
Equation �A3� can be solved numerically within a range
smin
s
smax subject to appropriate initial conditions. Here,
smin=�→0 corresponds to the top of the vesicle, as shown in
Fig. 8, and smax denotes the contour point where the vesicle
establishes a close contact with the spherical colloid. At
s=smin we specify the initial conditions ��smin�=�,
��smin�=b�, ��smin�=b�, and 
s�smin�=0. The constants b
and 
a can be determined from the two matching conditions
at s=smax,

FIG. 8. Shape of a rotationally symmetric vesicle that partially wraps a
spherical colloid of radius Rc. The arc length s and the functions ��s� �dis-
tance from the axis of symmetry� and ��s� �angle between the vesicle
normal and the axis of symmetry� are indicated. The optimal shape is cal-
culated as outlined in the Appendix.
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��smax� = 2Rc
	
�1 − 
� ,

��smax� = � + sin−1�2	
�1 − 
�� �
 � 0.5� , �A4�

��smax� = 2� − sin−1�2	
�1 − 
�� �
 	 0.5� .

Inserting the solutions for ��s� and ��s� into Eq. �A1� al-
lows us to calculate Fbend.
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